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1053 Budapest, Reáltanoda u. 13-15, Hungary

{miklosi,ligeti}@renyi.hu
4 Department of Computer Science, Eötvös Loránd University
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Abstract. The evolutionary distance between two organisms can be de-
termined by comparing the order of appearance of orthologous genes in
their genomes. Above the numerous parsimony approaches that try to
obtain the shortest sequence of rearrangement operations sorting one
genome into the other, Bayesian Markov chain Monte Carlo methods
have been introduced a few years ago. The computational time for con-
vergence in the Markov chain is the product of the number of needed
steps in the Markov chain and the computational time needed to per-
form one MCMC step. Therefore faster methods for making one MCMC
step can reduce the mixing time of an MCMC in terms of computer
running time.
We introduce two efficient algorithms for characterizing and sampling
transpositions and inverted transpositions for Bayesian MCMC. The first
algorithm characterizes the transpositions and inverted transpositions by
the number of breakpoints the mutations change in the breakpoint graph,
the second algorithm characterizes the mutations by the change in the
number of cycles. Both algorithms run in O(n) time, where n is the size
of the genome. This is a significant improvement compared with the so
far available brute force method with O(n3) running time and memory
usage.

1 Introduction

The differences between the order of genes in two genomes have been used as
a measurement of evolutionary distance already more than six decades ago [1].
The rediscovery of inversion distance is dated back to the eighties [2, 3], and
since then a large set of papers on optimization methods for genome rearrange-
ment problems has been published. However, except the case of sorting signed



permutations by inversions [4–9] or by translocations [10], only approximations
[11–15] and heuristics [16] exist. Most of the methods concerning with more
types of mutations either penalize all the mutations with the same weight [14],
or exclude a whole set of possible mutations due to a special choice of weights
[13]. (A nice exception can be found in [17].)

Above the numerous parsimony approaches that try to obtain the shortest se-
quence of rearrangement operations sorting one genome into the other, Bayesian
Markov chain Monte Carlo methods have been introduced a few years ago. They
define different models where genomes can evolve by reversals [18–20], reversals
and translocations [21] or reversals, transpositions and inverted transpositions
[22, 23]. It has been shown that transpositions and inverted transpositions could
happen in unichromosomal genomes [24], therefore it is natural to incorporate
such events into the Bayesian model. So far the available computer program
for the model accommodating transpositions and inverted transpositions used
O(n3) memory and had O(n4) running time per MCMC step [23]. Though this
memory usage and running time allowed the analysis of short genomes (for exam-
ple, Metazoan mithochondrial genomes), the program suffered memory problems
with large genomes containing hundreds of genes.

We introduce two algorithms for characterizing and sampling transpositions
and inverted transpositions. The first algorithm characterizes the mutations by
the number of breakpoints they remove and samples from a distribution in which
breakpoint-removing mutations are preferred. The second algorithm character-
izes the mutations by the change in the number of cycles in the graph of desire
and reality and samples from a distribution in which cycle-increasing mutations
are preferred. Both algorithms run in O(n) time where n is the length of the
genome. Since linear running time algorithms for characterizing and sampling
reversals have already been developed earlier [24, 23], an MCMC step in the re-
versals, transpositions and inverted transpositions accommodating model takes
only O(n2) running time (the sampling algorithm might be repeated O(n) times
in an MCMC step), and needs only linear memory with these algorithms.

2 Preliminaries

2.1 Mathematical Description of Genome Rearrangement

Genomes are assumed to have the same gene content, and each gene is repre-
sented in one copy in both genomes. Gene orders are described as signed permu-
tations, numbers correspond to genes, signs represent the reading direction of
genes. Since mutations are actions on the signed permutation group, transform-
ing a genome π1 to genome π2 is equivalent with sorting π−1

2 π1 to the identical
permutation, and thus, we are going to talk about sorting permutations instead
of transforming one into another. By following the convention, a signed permu-
tation of length n is represented as an unsigned permutation of length 2n, +i is
replaced by 2i−1, 2i, and −i is replaced by 2i, 2i−1. This unsigned permutation
is then framed to 0 and 2i+ 1. To properly mimic the signed permutation case,
only segments [2i+ 1, 2j] are allowed to mutate in the unsigned representation.



The graph representation of a signed permutation is called graph of reality

and desire, whose vertexes are the numbers from 0 to 2n+ 1, and edges are the
reality and desire edges. The reality edges connect every second position in the
permutation starting with 0. Mutations act on the reality edges; a reversal acts
on two reality edges, while a transposition or an inverted transposition on three
ones. The desire edges are arcs connecting 2i with 2i+1 for each i. A desire edge
is unoriented if it spans even number of points otherwise it is oriented. Since each
vertex has a degree of 2, the graph of desire and reality can be unequivocally
decomposed into cycles. A reality edge is a breakpoint if its cycle is longer than 2.

The identity permutation has 0 breakpoints and n + 1 cycles, all other mu-
tations have more breakpoints and less cycles. Therefore the sorting of a permu-
tation is equivalent with increasing the number of cycles to n+ 1 or decreasing
the number of breakpoints to 0. Mutations can be characterized by the num-
ber of breakpoints they remove or the change in the number of cycles. We will
talk about e.g. -3-b-transpositions meaning that they remove 3 breakpoints or
+1-c-inversions, which increase the number of cycles by 1.

2.2 Stochastic modeling and Bayesian MCMC

Time-continuous Markov models have been the standard approaches for stochas-
tic modeling of molecular evolution. Unlike the case of nucleic acid substitution
models, modeling genome rearrangements is computationally demanding and no
analytical solutions are known for transition probabilities. What we can calculate
is the likelihood of a trajectory, which is the probability that a given sequence of
mutations happened in a time span conditional on a set of parameters describing
the model [22–24].

To sample trajectories from the posterior distribution, we apply Bayesian
Markov chain Monte Carlo (MCMC) [25, 26] which is a random walk on the
possible trajectories, and whose stationary distribution is the posterior distribu-
tion of trajectories. The random walk is constructed in two steps. In the first
step, a new trajectory is drawn from a proposal distribution, and in the sec-
ond step, the discrepancy between the proposal and the target distribution is
corrected by accepting the proposal with probability

min

{

1 ,
P (X|Y )π(Y )

P (Y |X)π(X)

}

(1)

where P is the proposal distribution, π is the target one, X is the actual state
of the chain, and Y is the proposal, and the chain remains in state X with
the complement probability [25, 27]. The proposal step replaces a part of the
trajectory. The new sub-trajectory is obtained step by step, each mutation is
drawn from a distribution that mimics the target distribution we would like to
sample from, and the new proposal is independent from the old sub-trajectory.

The mixing of the Markov chain depends on how well the proposal distri-
bution can mimic the target distribution. When proposing a new sub-trajectory



step by step, published methods measure the departure of the actual rearrange-
ment from the rearrangement where the sub-trajectory must arrive to, and pro-
pose mutations decreasing the measurement of the departure (’good’ mutations)
with high probability and propose other ones (’bad’ mutations) with low proba-
bility. This philosophy seems to be essential since random mutations would reach
the target rearrangement with a very small probability.

Since there are 3
(

n+1

3

)

transpositions and inverted transpositions and
(

n+1

2

)

reversals, an algorithm that spends only constant time with each possible mu-
tation to decide its goodness will already run in Ω(n3) time. Therefore it is
not a trivial problem how to characterize and sample mutations in less time.
Below we show two algorithms characterizing and sampling transpositions and
inverted transpositions in linear time, a very simple for breakpoints and a more
sophisticated for cycles.

3 Characterizing and sampling transpositions and

inverted transpositions

Fig. 1. a) and b) shows the two decision trees that the below described algo-
rithms use to sample random mutations. At an internal node, a random decision
is made only if both subtrees are non-empty. If one of the subtrees is empty,
then the algorithm chooses the other subtree with probability 1. For example,
on Fig. 1. a), if there is no transposition or inverted transposition decreasing
the number of breakpoints by 3, and there is no reversal decreasing the number
of breakpoints by two, then there is no random decision at the root of the tree,
the algorithm will go to the right subtree with probability 1.

3.1 Sampler based on the change of breakpoints

The first algorithm characterizes the mutations with the number of breakpoints
the mutation removes. The algorithm calculates in linear time the number of
transpositions and inverted transpositions for each category on Fig. 1. a), namely
-3-b, -2-b, -1-b and “rest” mutations, and it is able to sample from a uniform
distribution for each category also in linear time.

Preprocessing For each i, we calculate b(i), which is the number of breakpoints
after position i; od(i), which is the number of oriented desire edges going from
the left end of a reality edge to the right after position i, and ud(i), which is the
number of unoriented desire edges going from the left end of a reality edge to the
right after position i. These numbers can be trivially calculated by traversing
the permutation from right to left.

Counting the mutations For each category and reality edge, we calculate in
O(1) time the number of mutations that fall in the given category and their
leftmost reality edge is the given edge on which they act. Since there are at most
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Fig. 1. Decision trees used by the introduced algorithms. T stands for transpositions
and inverted transpositions, R stands for reversals. Numbers on the edges means prob-
abilities, p is between 0.5 and 1. In practice, p = 0.8 gives a proposal distribution which
is reasonably close to the target distribution, acceptance ratio is about 20− 30%.

three such mutations for categories -3-b and -2-b (Fig. 2. a)-d)), and these cases
can be checked in O(1) time for each reality edge, this is the trivial part of the
algorithm.

The maximum number of possible -1-b-transpositions and inverted transpo-
sitions is O(n) for each reality edge. These mutations fall into three categories,
see Fig 2. e). Having known b(i), od(i) and ud(i) in advance, the number of
mutations can be calculated in constant time for each category. For example,
for the third case on Fig 2. e), it is ud(i) minus the possible zero, one or two
mutations which are actually -2-b- or -3-b-transpositions.

The number of “rest” mutations can be easily calculated if the number of
-3-b, -2-b and -1-b-mutations are subtracted from the number of all possible
mutations, which is

(

n+1−i
2

)

each for transpositions, inverted transpositions to
the right and inverted transpositions to the left.

Sampling from each category Since we know the number of possible mu-
tations for each category and each leftmost reality edges, we first sample the
leftmost reality edge from the properly weighted distribution. For -3-b and -2-
b-mutations, the number of mutations having a fixed leftmost reality edge is
constant, and the algorithm can choose a random one from this constant size
set.

To sample from the O(n) possible -1-b-transpositions or inverted transpo-
sitions, the algorithm first chooses one of the three possible sub-cases for the
selected leftmost reality edge, and depending on the chosen sub-case, it chooses
a breakpoint, an oriented or unoriented desire edge that defines the correspond-
ing mutation.
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Fig. 2. Configurations on which a mutation can decrease the number of breakpoints.
a)-c): 3-cycles on which if a) a transposition, b) an inverted transposition to the left
or c) an inverted transposition to the right acts, the number of breakpoints decreases
by 3. d) The three possible cases on which a transposition can decrease the number
of breakpoints by two. Similarly for inverted transpositions, there are 3-3 cases de-
rived from the 3-long cycles showed at b) and c). e) The three possible situation on
which a transposition can decrease the number of breakpoints by one. The empty re-
ality edge must be a breakpoint. Similar configurations can be obtained for inverted
transpositions.

To sample from the “rest” mutations, the algorithm first chooses a rightmost
reality edge after fixing the leftmost reality edge. It calculates the number of
“rest” mutations for each possible rightmost reality edge. This is the number of
all possible mutations minus the number of -3-b, -2-b and -1-b mutations. The
subtracted numbers can be calculated in O(1) time, hence the number of “rest”
mutations for each rightmost edge. After this, the algorithm chooses a rightmost
edge from the properly weighted distribution, and finally, the algorithm chooses
one from the O(n) possible middle reality edges, given the fixed leftmost and
rightmost edges.

3.2 Sampler based on the change of cycles

The second algorithm characterizes the mutations by the change in the number of
cycles. Though this algorithm does not tell the exact number of mutations falling
into a given class, it does tell for each category and for each reality edge whether
or not there exists a mutation that falls into the given category and its leftmost
edge is the given one. This is enough for using the decision tree on Fig. 1. b)
and for sampling from a distribution for which the sampling probabilities can
be calculated. (We would like to mention for non-experts that the ability of
sampling from a distribution does not imply that sampling probabilities can be
calculated, see for example [28, 26, 24].)

It is easy to show that cycle-increasing mutations act on one cycle. If three
reality edges are in one cycle, they are in one of the eight possible configurations
on Table 1. The idea of the algorithm is that for each configuration and reality
edge, the algorithm decides whether or not there are other two reality edges to



the right being in the given configuration with the third edge. If so, then the
reality edge goes to a set from which the algorithm chooses a random leftmost
reality edge. Once the algorithm has chosen the mutation type and the leftmost
reality edge, it decides for each reality edge on the right hand side of the left-
most edge whether or not it can be together with a rightmost reality edge in a
configuration that is good for the given mutation type. After choosing a random
middle edge from the ensemble of possible middle edges, the algorithm finally
chooses a random good leftmost edge. This method also takes only O(n) time
and memory.

Preprocessing The algorithm works on each cycle independently. Starting with
the leftmost edge of the cycle, the algorithm traverses the cycle and stores the
visiting order of reality edges, as well as the direction of the reality edges on the
cycle-traversing. π(i) tells the visit order of the reality edge in the ith position,
and pos(i) tells the position of the edge which was the ith in the cycle tour and
sign(i) tells the direction of the edge.(We will denote by plus sign the left to
right direction and by minus sign the right to left direction.) These arrays can
be trivially calculated in O(n) time.

After this, the algorithm traverses the reality edges in reverse position order
(namely, from right to left), and calculates smax(i) = maxj≥i{π(j)|sign(j) = s}
both for positive and negative signs.

Configuration transposition inv. trans. to the left inv. trans. to the right
 

+2-c +1-c +1-c
 

+1-c +2-c “rest”
 

+1-c “rest” +2-c
 

+1-c “rest” “rest”
 

“rest” +1-c +1-c
 

“rest” +1-c “rest”
 

“rest” “rest” +1-c
 

“rest” “rest” “rest”

Table 1. The possible configurations of three reality edges in a cycle and the category of
mutations acting on them. Dotted arcs are not necessarily reality edges but alternating
paths of reality end desire edges.

Existence of mutations Each configuration on Table 1 can be traversed in
six possible ways, see for example on Fig. 3. how the first configuration on



Table 1 can be traversed. Eight configuration times the six possible traversing
gives 48 cases, and this is the 3! possible permutations of the visiting order of
the three edges multiplied by the 23 possible signs of the three edges. Instead
of configurations and traversing, we will talk about visiting permutations and
signs, there is a one-to-one correspondence between them. Therefore the problem
is to tell in constant time for each permutation, sign pattern and reality edge
whether or not there are other two reality edges to the right being in the given
permutation and sign pattern. Any sign pattern can be discussed in a general
way, the three signs will be denoted by s1, s2 and s3 from left to right.

Another observation is that it is enough to give algorithms for the 1, 2, 3, the
2, 1, 3 and 1, 3, 2 permutations since the cycle can be traversed with starting the
tour on the leftmost edge in the other direction. This will cause a change in the
permutation such that 3 and 1 will be swapped, and all signs will change to the
other sign. For example, on Fig. 3. the cases on the right column will turn to
the cases on the left column if the cycle is traversed in a reverse order.
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Fig. 3. The possible visiting order of three reality edges on which a transposition
increases the number of cycles by two. Dotted arcs are not necessarily reality edges but
alternating paths of reality and desire edges.

The 1, 2, 3 case The 1, 2, 3 permutation is the easy case for any signs. The
algorithm traverses again the reality edges in a reverse position order, and cal-
culates

s2 max s3 max(i) = max
j≥i

{π(j)|π(j) < s3 max(j) & sign(j) = s2} (2)

There is a 1, 2, 3 permutation with a good sign pattern for a position i if sign(i) =
s1 and π(i) < s2 max s3 max(i).

The 2, 1, 3 case The algorithm runs an index i from 1 to n and is in the
rightmost position j for which π(j) < i, sign(j) = s2 and s3 max(j) > i. If



pos(i) < j and sign(i) = s1, then there is a 2, 1, 3 case with proper signs starting
in position pos(i), otherwise such configuration does not exist in that position.
Knowing the pos() and s3 max() arrays, it is easy to jump to the proper rightmost
position until i > s3 max(j). Then the algorithm must go back to the rightmost
position j for which π(j) < i < s3 max(j). Directly traversing back the positions
would take O(n) time and such traversing back might be necessary O(n) times,
giving the algorithm an O(n2) running time. Therefore some preprocessing is
necessary.

In the preprocessing, the algorithm marks the anchor points of the s3 max
threshold function (rectangles on Fig. 4.). Then for each interval between two
consecutive anchor points, it traverses backward the interval, and creates the
chained list of the local s2 min anchor points (black circles on Fig. 4, locality
also means that it checks only points which are smaller than the right anchor
s3 max value). For the local minimum, it finds on the previous chained list the
first anchor point which is smaller than the actual local minimum, traversing
the chain from up to down. The actual list is then augmented with the rest of
the list. With up-to-down search, each anchor point is visited only once while
searching, providing the O(n) running time of the preprocessing algorithm.
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Fig. 4. Explanatory figure for the 2, 1, 3 algorithm. For details, see the text.

Increasement of i is indicated with a double line on Fig. 4., jumping in posi-
tions is indicated with a dashed line. While there is no j for which π(j) < i <

s3 max(j) and sign(j) = s2, the algorithm remains in position 1 and marks all
pos(i) having no good 2, 1, 3 configuration. The algorithm jumps positions to-
ward the right end of the permutation whenever a good position j appears, until



i > s3 max(j). Then it jumps to the next s3 max anchor point to the left, and
slides down on the s2 min chained list until for the current position j, π(j) < i.
Each edge of the s2 min anchor chains is used at most once for back-traversing.
To see this, suppose that the algorithm used an edge in a back-traversing, let
the value of the starting s3 max anchor point be x, and let the starting point of
the edge in question be in position j, hence having value π(j). Clearly, π(j) < x,
and next time the traceback starts when i > x. Although the back-traversing
might arrive to position j, it will stop since i > π(j). Since the total size of the
chained s2 min anchor list is O(n), the algorithm spends only O(n) time with
back-traversing, and hence, has only O(n) running time altogether.

The 1, 3, 2 case For this case, the preprocessing creates a double chained list
of the numbers having sign s3. It traverses the permutation in position order
(namely, from left to right) and pulls out the numbers having sign s3 from the
chained list. The preprocessing remembers the neighbours of each number being
pulled out, hence it will be possible to put back the numbers in reverse order.

After the preprocessing, the algorithm traverses the permutation in reverse
position order (namely, from right to left), and puts back the visited s3-signed
numbers into the chained list. The algorithm remembers the maximal visited
number with sign s3 having to the right a greater number with s2 sign, denoted
by M . Whenever the algorithm arrives to an s2-signed number, S, it updates
M . To do this, it walks on the chained list of s3-signed numbers till the last
number in the chain that is smaller than S. For any s1-signed number X, there
is a 1, 3, 2 configuration iff X < M .

Mutations with leftmost reality edge of position 1, and sampling the
middle and rightmost edges The above mentioned algorithms work for the
reality edge in position 1, with the notation that the given permutation patterns
must be compared with the configurations in Table 1.

Once we choose a rightmost edge in position i and the type of the mutation,
deciding whether or not a reality edge can be in a pattern being good for the
prescribed mutation is very easy, one should only check the s3 min and s3 max
values with the possible restriction they might not be bigger or smaller than π(i),
depending on the searched permutation pattern. Similarly, once the rightmost
and middle edge have been chosen, it is very easy to find the list of possible
leftmost reality edges.

Weighting the reality edges Sampling from the uniform list of possible right-
most edges might lead to a very skewed distribution where mutations on the right
ends of cycles are preferred. This is because there might be significantly more
mutations of a category with a leftmost reality edge at the left end of a cycle
than at the right end of a cycle. Therefore some sophisticated weighting yields
better distribution also in terms of acceptance ratios. This statistical issue will
be discussed in another paper.



“Rest” mutations We must mention that mutations acting on more than one
cycle all fall into the “rest” category. Knowing whether or not there are reality
edges being in other cycles, it is trivial to decide whether or not mutations acting
on different cycles and having the current reality edges as leftmost edge exists
is a trivial problem.

4 Discussion

We introduced two strategies for efficient sampling of transpositions and inverted
transpositions. Both algorithms run in O(n) time and memory, and can be used
in Bayesian MCMC. With these sampling algorithms, one MCMC step can be
performed in O(n2) time and in linear memory, which is a significant improve-
ment to the so far available algorithm having O(n4) running time and O(n3)
memory.

We hope we could convince the readers that designing Markov chain Monte
Carlo methods in bioinformatics is not only a statistical problem but an at least
as important algorithmic problem, too.
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