Extremal problems in planar graphs

Description: The subject is a new, fast developing area of extremal graph theory. There are two types of basic problems:
(1) determine/estimate the maximum number ex_p(n,F) of edges in a planar graph G of n vertices not containing F as a subgraph.
(2) determine/estimate the maximum number $f(n, H)$ of copies of H in a planar graph G of n vertices

The various constructions of extremal graphs make the subject particularly interesting. The starting point of this subject was the classical result that the maximum number of edges in a planar graph of n vertices is $3 n-6$ if $n \geq 3$. Many years later, Dowden proved that the maximum number of edges in a planar graph not containing any 4-cycle is at most $12(n-2) / 7$ and it is sharp for infinitely many values of n. For details, see
C. Dowden, Extremal C_4-free/C_5-free planar graphs, J. Graph Theory 83 (2016), 213-230.
D. Ghosh, E. Gyori, R. Martin, A. Paulos, C. Xiao, Planar Turan number of the 6-cycle, SIAM J. Discrete Math. 36(3) (2022), 2028-2050.
E. Gyori, X. Wang, Z. Zheng, Extremal planar graphs with no cycles of particular lengths, arXiv:2208.13477 (joint paper with BSM students!)

We plan to consider problems of this type for particular graphs F and H .
Prerequisites: graph theory and combinatorics : (Turan's theorem, Euler's formule for plane graphs)
Professor: dr Ervin Gyori
Contact: gyori@renyi.hu

Qualifying problems:
Problem 1. What is the maximum number of edges in a graph G of n vertices not containing the 4 vertex graph of two triangles sharing an edge?

Problem 2. What is the maximum number of edges in an planar graph of n vertices not containing any triangle, 4-cycle or 5-cycle? Find extremal constructions for large n too.

Problem 3. Construct triangle-free planar graphs of n vertices with many (maximum number of?) 5cycles. Try to find different contructions.

