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Convexity plays a central role in geometry as well as in computer sci-
ence. In this project, we will focus on combinatorial aspects of convexity,
by studying discretized versions of Helly’s theorem. Let us start with the
central concepts.

Let C be a point set in Rd. We say that C is convex, if along with
any two points of it, C also contains the line segment between these two
points. Equivalently, C is convex iff it is closed under taking finite convex
combinations: for any x1, . . . , xn ∈ C, and any set of scalars λ1, . . . , λn ∈ R
satisfying λi ≥ 0 for every i and

∑n
i=1 λi = 1, we have that

n∑
i=1

λixi ∈ C .

Let C = {C1, C2, . . . , Cn} be convex sets in Rd. Helly’s theorem, one of
the cornerstones of combinatorial convexity, states the following:

Theorem 1. If any d+ 1 sets of the family C share a common point, then
there is a point common to all members of C.

The conclusion may also be written as ∩C 6= ∅.
Helly’s theorem has been generalized in many directions. There exist

versions where convexity of the sets is not required, or where the ambient
space differs from Rd.

In the research project, we will be interested in the following problem.
Let S ⊂ Rd be a discrete set – that is, a set with no accumulation points
(i.e. each point of the set has a neighborhood which contains no other points
of S). A typical example is that of the integer lattice Zd consisting of all
points with only integer coordinates. Now, we can ask for the Helly number
of S which is defined to be the smallest positive integer n for which the
variant of Theorem 1 holds under the restriction that in the intersections,
only points belonging to S are taken into account:

Definition 1.1. For a discrete set S ⊂ Rd, let H(S) denote the smallest
positive integer such that for any family C of convex sets in Rd for which the
intersection of any H(S) or fewer members contain a point of S in common,
then there exists a point of S common to all members of C.

The study of Helly numbers of discrete point sets have been very active
recently. One of the important tools is due to Hoffmann:

Proposition 1.1. If S ⊂ Rd is a discrete set, then H(S) equals the max-
imum number of vertices of an empty convex polytope in S, that is, a con-
vex polytope with vertices from S which does not contain any further point
from S.
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For d = 2, polytopes are replaced by polygons above.
The first introductory problem asks for applying this proposition to the

case when S is the planar integer lattice.

Qualifying Problem 1. Find the Helly number of the integer lattice Zd.

First you should start by considering d = 2, then proceed to higher dimen-
sions, at least to d = 3. It is easy to come up with an intuitively extremal
empty convex polytope – can you prove that it is extremal indeed?

The next problem asks for a planar question. For a set A ⊂ R, we will
consider the usual direct product A×A = {(a, b) : a, b ∈ A}.

Qualifying Problem 2. Construct a sequence A = {a1, a2, a3, . . .} of pos-
itive numbers for which the set A×A ⊂ R2 has infinite Helly number.

In the project, we will take S to be a variety of discrete sets in the plane
and in higher dimensions. In particular, we will consider direct products of
the form S = A × B with A,B ⊂ R being discrete sets. Another task will
be to analyze 3-dimensional direct products. Variants of this problem have
been studied by former BSM students.

Here is a final introductory problem, for which I do not expect a definite
answer, rather just looking for some constructions.

Qualifying Problem 3. Let A = {2n : n ∈ N}, and set S = A×A×A ⊂ R3.
Give a nontrivial lower bound on H(S) which is as good as you can get.

There are a number of interesting questions in this area, so an enjoyable
– and hopefully productive – research project is guaranteed! Of course, we
will spend the first half of the project learning all the necessary framework
and methods.

Prerequisites: Calculus 1, some knowledge in geometry and combinatorics
is preferred – however, we are going to cover all the material needed in the
first part of the project.

If you are interested in participating the research project, please send
your solutions to the above 3 Qualifying Problems to the email address
ambruge@gmail.com.


