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Introduction

The goal of this research project is to study the potential connections be-
tween cover graphs and universally rigid graphs and to obtain new results
and examples in at least one of these areas of graph theory and combinatorial
rigidity, respectively.

In what follows we present the basic notions and some of the open ques-
tions.

Frameworks and universal rigidity

A d-dimensional framework is a pair (G, p), where G = (V,E) is a graph
and p is a map from V to the d-dimensional Euclidean space Rd. We con-
sider the framework to be a straight line realization of G in Rd. Intuitively,
we can think of a framework (G, p) as a collection of bars and joints where
each vertex v of G corresponds to a joint located at p(v) and each edge to
a rigid (that is, fixed length) bar joining its end-points. Two frameworks
(G, p) and (G, q) are equivalent if dist(p(u), p(v)) = dist(q(u), q(v)) holds for
all pairs u, v with uv ∈ E, where dist(x, y) denotes the Euclidean distance
between points x and y in Rd. Frameworks (G, p), (G, q) are congruent if
dist(p(u), p(v)) = dist(q(u), q(v)) holds for all pairs u, v with u, v ∈ V . This
is the same as saying that (G, q) can be obtained from (G, p) by an isome-
try of Rd. We say that (G, p) is globally rigid in Rd if every d-dimensional
framework which is equivalent to (G, p) is congruent to (G, p). We obtain
an even stronger property by extending this condition to equivalent real-
izations in any dimension: we say that (G, p) is universally rigid if it is a
unique realization of G, up to congruence, with the given edge lengths, in
all dimensions Rd, d ≥ 1.

It is NP-hard to decide if even a 1-dimensional framework is globally
rigid. The complexity of the corresponding decision problem for universal
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rigidity seems to be open, even for d = 1. These problems become more
tractable, however, if we assume that there are no algebraic dependencies
between the coordinates of the points of the framework. A framework (G, p)
is said to be generic if the set containing the coordinates of all its points is
algebraically independent over the rationals. It is well-known that the global
rigidity of frameworks in Rd is a generic property, that is, the global rigidity
of (G, p) depends only on the graph G and not the particular realization
p, if (G, p) is generic. This property does not hold for universal rigidity,
even if d = 1, which follows by considering different generic realizations of a
four-cycle on the line. A graph G is called generically globally rigid, (resp.
generically universally rigid) in Rd if every d-dimensional generic framework
(G, p) is globally rigid (resp. universally rigid). We shall also use the shorter
versions d-GGR and d-GUR, respectively, for these families of graphs. d-
GGR graphs are well-characterized for d ≤ 2. It remains an open problem to
extend these results to higher dimensions or to characterize d-GUR graphs
for any d ≥ 1.

Cover graphs

Since it is probably difficult to characterize 1-GUR graphs, special families
of 1-GUR (or not 1-GUR) graphs may be of interest. In this context we
offer the study of the following family of graphs as a candidate for being not
1-GUR. An orientation of a graph G is a directed graph obtained from G
by replacing each edge uv by one of the directed edges (arcs) uv or vu. Let
G = (V,E) be a graph and let Ḡ be an acyclic orientation of G. An edge e
of G is dependent if the reversal of e in Ḡ creates a directed cycle. An acyclic
orientation without dependent edges is called strongly acyclic. We say that
G is a cover graph if G has a strongly acyclic orientation. (It is known that
G is a cover graph if and only if it is the Hasse diagram of some partially
ordered set on V .) All bipartite graphs are cover graphs: orient all edges
from one colour class to the other. Note that cover graphs are triangle-
free. It is NP-hard to test whether a given graph is a cover graph. It is
known that triangle-free planar graphs (and more generally, triangle-free 3-
colorable graphs) are cover graphs. (Recall that by a theorem of Grötzsch,
every triangle-free planar graph is 3-colorable.)

Open problems

We shall focus on two or three open problem suitable for the interested
students. Some examples are given below.
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First we recall a conjectured inductive construction of 1-GUR graphs.

Conjecture 1 A graph G on at least three vertices is 1-GUR if and only if
G can be obtained from K3 by the following operations:
(i) add an edge,
(ii) choose two graphs G1, G2 built by these operations, choose two sets U1 ⊆
V (G1), U2 ⊆ V (G2) with |U1| = |U2| ≥ 2, delete all edges joining the vertices
of U1 in G1, then glue the two graphs together along the vertices in U1 and
U2.

The ”if” direction of the conjecture has been verified. Note that the
graphs built up from a triangle by operations (i) and (ii) must contain a
triangle. Thus finding triangle-free 1-GUR graphs would be interesting.

Minimally 1-GUR graphs, for which the deletion of any edge makes them
not 1-GUR, are also interesting. These graphs may be sparse and may have
small vertex separations, along which they may be decomposable by the
inverse operation of glueing (as in the conjecture above).

Question 2 Let G = (V,E) be a minimally 1-GUR graph. Is there an upper
bound on |E| as a linear function of |V |?

Special families which are (not) 1-GUR would also be interesting.

Question 3 Is it true that no triangle-free planar graph (or even triangle-
free 3-colorable graph) on at least three vertices is 1-GUR?

We may also ask whether all non-cover graphs are 1-GUR. An inter-
esting graph to analyse is the Grötzsch graph, which is triangle-free and
4-chromatic. It has been shown that this graph is not a cover graph.

Question 4 Is the Grötzsch graph 1- GUR?

Since this graph is triangle-free, an affirmative answer would disprove
the conjecture above

Methods and prerequisites

We shall mostly use graph theoretic and combinatorial methods, so famil-
iarity with the basics of graph theory is useful. Depending on the problems,
in some cases geometric intuition is also useful, as well as familiarity with
elementary linear algebra.
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Qualifying problems

Solve at least three out of the next four exercises to participate in the re-
search project, by the deadline.

Qualifying problem 1. Let G be a connected graph on n vertices and
with n edges. Show that G has an orientation Ḡ in which every vertex v has
in-degree exactly one (that is, there is exactly one directed edge uv whose
head is v).

Qualifying problem 2. Prove that a graph G has a universally rigid
realization (G, p) in R1 in which p(u) ̸= p(v) for all u, v ∈ V (G) if and only
if G is 2-connected. Hint: start with the cycles.

Qualifying problem 3. Suppose that D is an acyclic directed graph with
a designated vertex s. Show that D has a spanning arborescence rooted at
s if and only if the in-degree of each vertex v, v ̸= s, is at least one. (An
arborescence rooted at s is an oriented tree in which each vertex can be
reached from s on a directed path. It is spanning, if it contains all vertices
of G.)

Qualifying problem 4. Prove that a graph G has a universally rigid
realization (G, p) in R2 in which p(u) ̸= p(v) for all u, v ∈ V (G) if and only
if G is a complete graph.
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