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Convexity plays a central role in geometry as well as in computer sci-
ence. In this project, we will focus on combinatorial aspects of convexity,
by studying doscretized versions of Helly’s theorem. Let us start with the
central concepts.

Let C be a point set in Rd. We say that C is convex, if along with
any two points of it, C also contains the line segment between these two
points. Equivalently, C is convex iff it is closed under taking finite convex
combinations: for any x1, . . . , xn ∈ C, and any set of scalars λ1, . . . , λn ∈ R
satisfying λi ≥ 0 for every i and

∑n
i=1 λi = 1, we have that

n∑
i=1

λixi ∈ C .

Let C = {C1, C2, . . . , Cn} be convex sets in Rd. Helly’s theorem, one of
the cornerstones of combinatorial convexity, states the following:

Theorem 1. If any d+ 1 sets of the family C share a common point, then
there is a point common to all members of C.

The conclusion may also be written as ∩C 6= ∅.
Helly’s theorem has been generalized in many directions. There exist

versions where convexity of the sets is not required, or where the ambient
space differs from Rd.

In the research project, we will be interested in the following problem.
Let S ⊂ Rd be a discrete set – that is, a set with no accumulation points. A
typical example is that of the integer lattice Zd consisting of all points with
only integer coordinates. Now, we can ask for the Helly number of S which is
defined to be the smallest positive integer n for which the restricted version
Theorem 1 holds under the restriction that only common points belonging
to S are taken into account:

Definition 1.1. For a discrete set S ⊂ Rd, let H(S) denote the smallest
positive integer such that for any family C of convex sets in Rd for which the
intersection of any H(S) or fewer members contain a point of S in common,
then there exists a point of S common to all members of C.

The study of Helly numbers of discrete point sets have been very active
recently. One of the important tools is due to Hoffmann:

Proposition 1.1. If S ⊂ R2 is a discrete set, then H(S) equals the maxi-
mum number of vertices of an empty convex polygon in S, that is, a convex
polygon with vertices from S which does not contain any further point from
S.
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A higher dimensional version also holds, where one has to seek the max-
imum number of vertices of an empty convex polytope with vertices in S.

The first introductory problem asks for applying this proposition to the
case when S is the planar integer lattice.

Qualifying Problem 1. Find the Helly number of the integer lattice Z2.

To give a hint, you may check Pick’s theorem in case you are not familiar
with it.

The Helly number of Zd has been determined for all d ≥ 2. The next
intro problem is to go for the d = 3 case.

Qualifying Problem 2. Prove that H(Z3) = 8.

The hint here is as follows. On the one hand, find an empty polytope
with 8 integer vertices. On the other hand, prove that this is the maximum
number of vertices by showing that if the polytope has at least 9 vertices,
then the midpoint of the segment connecting some two of these has only
integer coordinates – thinking modulo 2 might help here!

Based on the previous two problems, you may also attack the question in
all dimensions – note that this is just an extra problem:

Extra Qualifying Problem. Calculate H(Zd).
In the project, we will take S to be a variety of discrete sets in the

plane. We will work on the case when S is a direct product: S = A × B
with A,B ⊂ R being discrete sets. A variant of this problem was studied,
among others, by a former BSM student in an REU project! We shall first
concentrate on the case when A = {nα : n ∈ N} and B = {nβ : n ∈ N} with
some positive parameters α, β > 0. Then we can move on to other discrete
sets with nice structural properties, e.g. the stretched grid for which the set
of y-coordinates are increasing exponentially faster than the x-coordinates.

Here is a final introductory problem, for which I do not expect a definite
answer, rather just looking for some constructions.

Qualifying Problem 3. Let A = {2n : n ∈ N}, and set S = A × A. Give
a nontrivial lower bound on H(S) which is as good as you can get.

You may also think of giving an upper bound.

There are a number of interesting questions in this area, so an enjoyable
– and hopefully productive – research project is guaranteed! Of course, we
will spend the first half of the project learning all the necessary framework
and methods.

Prerequisites: Calculus 1, some knowledge in geometry and combinatorics
is preferred – however, we are going to cover all the material needed in the
first part of the project.

If you are interested in participating the research project, please send your
solutions to the above 3 (+1) Introductory Problems to the email address
ambruge@gmail.com.


