Causal Vector Autoregression (advisor: Marianna Bolla)

Qualifying exercises

1. Consider the symmetric, one-dimensional random walk defined by

$$
X_{0}=0, \quad X_{t}=\sum_{j=1}^{t} \xi_{j}, \quad t=1,2, \ldots
$$

where $\left\{\xi_{j}\right\}$ is a binary process: ξ_{j} s are i.i.d. (independent, identically distributed) and $\xi_{j}= \pm 1$ with probability $\frac{1}{2}-\frac{1}{2}$.
Prove that the random walk process $\left\{X_{t}\right\}$ is not weakly stationary.
2. Show that the one-dimensional process

$$
X_{t}=A \cos (\omega t)+B \sin (\omega t), \quad t=0, \pm 1, \pm 2, \ldots
$$

is weakly stationary, where A, B are uncorrelated, standard normal (Gaussian) random variables and $\omega \in[0,2 \pi)$ is a fixed frequency. Find the autocovariance function of the process too.
3. We have a DAG (Directed Acyclic Graph), in which there are no directed cycles. Prove that there is a topological ordering/labeling of the vertices such that for every $i \rightarrow j$ edge, the relation $j<i$ holds. (In a directed graphical model, the nodes correspond to random variables, and the $i \rightarrow j$ relation means that the random variable corresponding to i is the parent/cause of the one corresponding to j, so one can as well think of labels as ages.)

