Regularity Based Spectral Clustering Advisor: Prof. Marianna Bolla

Qualifying exercises

The following graph based matrices will be used. Let G be a simple graph on vertex set $\{1, \ldots, n\}$ with $n \times n$ adjacency matrix $\mathbf{A} = (a_{ij})$ (for $i \neq j$: $a_{ij} = a_{ji} = 1$ if vertex i and j are connected and 0 otherwise; $a_{ii} = 0, i = 1, \ldots, n$). Let $d_i = \sum_{j=1}^n$ be the degree of vertex i for $i = 1, \ldots, n$. We assume that G is connected, i.e., $d_i > 0, i = 1, \ldots, n$. Let \mathbf{D} denote the degree matrix: diagonal matrix containing d_1, \ldots, d_n in its main diagonal, and zeros otherwise.

The Laplacian matrix of G is L = D - A. The normalized (degree-corrected) adjacency matrix of G is $A_D = D^{-1/2}AD^{-1/2}$. The normalized (degreecorrected) Laplacian matrix of G is $L_D = D^{-1/2}LD^{-1/2}$.

Exercises to solve

1. Let K_n be the complete graph on n vertices (each $i \neq j$ pairs are connected). Find the eigenvalues together with corresponding eigenvectors of its A, L, A_D, L_D matrices.

Please, derive those by hand calculations, numerical results without explanation are not accepted.

2. Let $K_{n,m}$ be the complete bipartite graph on n + m vertices (there are two independent vertex classes with no edges inside on n and m vertices, respectively, and all possible edges between these two classes are present). Find the eigenvalues together with corresponding eigenvectors of the adjacency matrix A of $K_{n,m}$.

Please, derive those by hand calculations, numerical results without explanation are not accepted.

3. Show that if A and B are arbitrary $n \times n$ symmetric, positive definite real matrices, then AB (usually not symmetric) has positive real eigenvalues. (Note that A and B usually do not commute, so their eigenvalues are not multiplied together.)