Groups and graph limits BSM research course warmup

Miklos Abert

Let G be a connected, d-regular graph. For a vertex $v \in V(G)$ and natural n let $p_{v,2n}$ denote the probability that the random walk of length 2n starting at v returns to v.

Exercise 1 Show that

$$\lim_{n\to\infty} \sqrt[2n]{p_{v,2n}}$$

exists and is independent of v.

Let $l^2(G)$ denote the Hilbert space of square summable functions

$$l^{2}(G) = \left\{ f : V(G) \to \mathbb{R} \mid \sum_{x \in V(G)} f(x)^{2} < \infty \right\}.$$

Let the Markov operator $M: l^2(G) \to l^2(G)$ be defined by

$$(Mf)(x) = \frac{1}{d} \sum_{(x,y) \in E(G)} f(y).$$

Exercise 2 Let T be the 3-regular tree. Show that there exists no $0 \neq f \in l^2(G)$ and $\lambda \neq 0$ such that $Mf = \lambda f$.

Let S denote the unit circle on the plane with Lebesque measure λ and let r be an irrational rotation.

Exercise 3 There exists no measurable $A \subseteq S$ such that $x \in A$ if and only if $r(x) \notin A$.

Exercise 4 For every $\varepsilon > 0$ there exists a measurable $A \subseteq S$ such that the above is ε -true, that is,

$$\lambda (r(A) \cap A) + \lambda (r(A^c) \cap A^c) < \varepsilon.$$

Here A^c is the complement of A.

Exercise 5 Let us define the random tree T_n on n points as follows. Take T_{n-1} and add a new vertex, attached to a uniform random vertex in T_{n-1} . What can you say about

$$\lim_{n\to\infty} \frac{\# of \ leaves \ of \ T_n}{n}?$$