# Groups and graph limits BSM research course warmup 

Miklos Abert

Let $G$ be a connected, $d$-regular graph. For a vertex $v \in V(G)$ and natural $n$ let $p_{v, 2 n}$ denote the probability that the random walk of length $2 n$ starting at $v$ returns to $v$.

## Exercise 1 Show that

$$
\lim _{n \rightarrow \infty} \sqrt[2 n]{p_{v, 2 n}}
$$

exists and is independent of $v$.
Let $l^{2}(G)$ denote the Hilbert space of square summable functions

$$
l^{2}(G)=\left\{f: V(G) \rightarrow \mathbb{R} \mid \sum_{x \in V(G)} f(x)^{2}<\infty\right\}
$$

Let the Markov operator $M: l^{2}(G) \rightarrow l^{2}(G)$ be defined by

$$
(M f)(x)=\frac{1}{d} \sum_{(x, y) \in E(G)} f(y)
$$

Exercise 2 Let $T$ be the 3-regular tree. Show that there exists no $0 \neq f \in l^{2}(G)$ and $\lambda \neq 0$ such that $M f=\lambda f$.

Let $S$ denote the unit circle on the plane with Lebesque measure $\lambda$ and let $r$ be an irrational rotation.

Exercise 3 There exists no measurable $A \subseteq S$ such that $x \in A$ if and only if $r(x) \notin A$.
Exercise 4 For every $\varepsilon>0$ there exists a measurable $A \subseteq S$ such that the above is $\varepsilon$-true, that is,

$$
\lambda(r(A) \cap A)+\lambda\left(r\left(A^{c}\right) \cap A^{c}\right)<\varepsilon
$$

Here $A^{c}$ is the complement of $A$.
Exercise 5 Let us define the random tree $T_{n}$ on $n$ points as follows. Take $T_{n-1}$ and add a new vertex, attached to a uniform random vertex in $T_{n-1}$. What can you say about

$$
\lim _{n \rightarrow \infty} \frac{\# \text { of leaves of } T_{n}}{n} ?
$$

