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Single-user tracing and disjointly superimposed
codes

Mikl 6s Cgiros and Mikbs Ruszink

Abstract— The zero-error capacity region of r-out of T user Here we investigate the case when the receiver has to be
multiple access OR channel is investigated. A family of subsets aple to identifyjust oneuser out of at most active ones.
of [n] = {l,....,n} is an r-single-user-tracing superimposed ciearly, if a code is superimposed in the classical sense then

;qdze[ér-ilg%hgtt%?rg”eg;sté ;u\mha?r1<gl|<;/Lrs<er;tr3<EBg€Erf;lzn it satisfies this requirement: being able to identify all active

F'. In this paper we introduce the concept of these codes and give US€rS, .the receiver. can always. hame just one. A p.raCtica|
bounds on their rate. We also consider disjointlyr-superimposed motivation for studying-SUT families rises from applications

codes. of combinatorial designs in genomics, reviewed in Section Il.
Index Terms— codes, superimposed codes, group testing, phys-Section Il discusses our results on the rate of single-user
ical mapping tracing superimposed codes. Section IV introduces the class
of disjointly superimposed codes, and analyzes their extremal

|. INTRODUCTION properties. Section V concludes the paper with some open

UPPOSE thafl” users share a common channel. A binar§uestions.
S\/ector of lengthn is associated to each user. T#& user

transmits its vectox; = (x},z7,...,2}) (i=1,2,...,T) if ||, SUPERIMPOSED CODES FOR THE PHYSICAL MAPPING
it is active, otherwise not. It is assumed that the transmission OF GENOMIC CLONES

is bit and block synchronized. The destination of the messages

is a single receiver that observes the bitwise OR vector of the”® €cently emerging application of superimposed codes,
vectors and group testing methods in general, is for the analysis of

\/ % genomic data. Examples include the quality-control of DNA
’ chips [7], and diverse applications related to genome sequenc-

associated to the active users. Moreover, suppose that at Most closing the remaining gaps at the end of a sequencing

r users are active simultaneously. In the classical frameworkprpject [8], and clone library screening [9], which we consider

of 7. ) .
superimposed coding, the receiver has to be able to identify he © \n more detail. The sequencing of Ia}rge genomes (such as
. uman) rely ongenomic clonesWe describe here briefly the
set of all active users from the output vecgoof the channel. A
i , ._relevant procedures, somewhat simplifying the problem. A re-
Thatis, the code must satisfy the property that for all chomggm overview of large genome sequencing techniques is given
of x1,...,x; andzy,...,z, of codewords withl < k,¢ <r 9€ g d 9 d 9

and {x; i} £ {21 2}, we have by E. Green [10]. The genome of an organism can be d_escribed

T mE T TRl by a sequence over a four-letter alphabet, corresponding to the

k ¢ four nucleotides used in DNA. Mammalian genome sizes are
\/ X; # \/ zj. in the order of billions. For our purposes, a genomic clone

i=1 j=1 is a random contiguous fragment of the genome. (Fragments

Although the rate of these codes have been studied extensialy inserted into a host cell, which multiplies and thus creates
in e.g., [1]-[6], it remains to be determined: the gap betweenany identical copies of the original cell containing the same
the known upper and lower bounds is still substantially largpiece of inserted foreign DNA fragment, hence the term

“clone.”) Typical clone fragment sizes are 100-200 thousand
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° 3 billion ° genome. In contrast to STS screening, the features are not
' defined before the experiment but are found in the analysis of
| genome Y | the outcome. In a current application, (unsequenced) rhesus
_______________________________________________ — . ,
: | 1 | TR *I | | § macaque clones are belng mapped tg the humal_’l genome. The
i E raw outcome of the experiment is a list of mappings between
] | | | | | *B | L& | : setsof pools and regions in the reference sequence. Each
| | ] | [%c | | | mapping is indicative of the fact that some clones are similar
; ! e 200k o . to the same region in the reference sequence. The set of pools
relonelbrary L.t containing those clones is observed by the experimenter, along
! with the reference region.
NINTSFOIR sequence The results of STS screening or a PGI experiment can be
CL L L feature used to select clones for complete sequencing. If the purpose

o
< <
I 0 of the experiment is to identify clones that are particularly
0 0 interesting and to sequence them completely, a single-user
(') (') tracing code is more adequate for the pooling design than a
“fully” superimposed code. In PGI, for instance, a number of
test . . .
resuls WX X WK overlapping macaque clones may include the same region that
is homologous to a particular human gene: the experimenter
will want to identify at least one of those clones for complete
sequencing, but there is no need to identify all of them as they

Fig. 1. Clone library screening. A clone library is a collection of random . .
fragments from a genome. Clones in a library are tested for the presenc&8vVeYy the same information about the genome.

a sequence feature, such as homology to a given region in a related genomé’he boundr on the number of “active users”, i.e., the
The tests are carried out by pooling the clones: if the clone subset comprisiygmper of clones exhibiting a given feature is determined
the pool contains the feature, the test is positive, otherwise it is not. by the number of clones”. The size of a clone Iibrary
is characterized by theoverage which equalsc = TL/G

o . ) ) . where L is the average length of a clone, and is the

~The main issue in constructing a physical map is thgis| genome length. Various aspects of clone overlaps can
discovery of overlaps. The key technique is to test sequenge gy died by modeling the clone positions as arrival times
features, which are necessarily shared by overlapping clongs, poisson-process. For example, the number of clones that
Often, a group-testing approach is employeddmpling the | de a given position in the genome is a Poisson random
DNA from different clones: a pool is defined by a subsgfyriaple with expected value [20]. Clone library coverage
of clones that are screened together in a single experimenfales are typically below ten, and are rarely above twenty. If

step. Figure 1 illustrates the concept of clone pooling. Ihique sequence features are used, then every feature is shared

the terminology of superimposed codes, clones correspo&g say, at most = [2¢] clones with high probability.
to users and pools correspond to the coordinates of the user

vectors: thei-th clone is included in poof if the j-th bit of
user vectorx; equals one. Active users correspond to clones !!l: SINGLE-USER TRACING SUPERIMPOSED CODES
containing a particular feature. When testing a feature, poolsAs the question is rather of a combinatorial nature, we
are tested individually, and exactly those pools that contairirtroduce a set terminology. Accordingly, codewords are char-
clone with the given feature test positive. The set (or at leastteristic vectors of subsets of a $et = {1,...,n} where
one) of the clones containing the feature has to be determined- 0, i.e., the subsefl corresponds to the binary vecter=
from the set of positive pools, in the same way as the set @f!, ... ") with 2/ = 1 if and only ifi € A, and vice versa.
active users needs to be determined from the bitwise OR ofThroughout the paper, we use the de Finetti notation for
their vectors. indicator functions, i.e{- - - } denotes an event, or its indicator
Historically, the most widely used features are short (Upinction, depending on the context. We wrftén) = o(g(m))
to the order of hundreds of letters) contiguous sequences tifidhe sequence (m)/g(m) — 0 asm — co. When the base
occur once in the genome, call8eéquence Tagged Sif&TS). of the logarithm matters, we use to denote binary logarithm.
All DNA in a pool can be tested for the presence of a given Definition 3.1: A family F C 2" is r-superimposed if
STS, by hybridization for example. Pooling designs for the
purposes of STS screening have been studied extensively [9], U A; # U B.
[12], [13], and this particular application inspired many recent !
theoretical results on superimposed codes and non-adaptive

]
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[
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group testing procedures [14]-[17]. for any

A more recent application uses shotgun sequences [18], (A1, As, ..., Ay} # {By,Bs,...,B.},
[19] for testing sequence features in pooled clones. Pooled '
Genomic Indexing [19] maps genomic clones to a referente< k,¢ <r; Ay, As,...,Ax,B1,Bs,..., By € J.

genome sequence. Thus, the type of sequence feature thaftle are interested in-single-user-tracingr-SUT) families,
is tested by PGI is similarity to a region in the referencdefined as follows.
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Definition 3.2: A family F is »-SUT if for all choices of The existence offy, - -- , ¥, contradicts the-SUT property.

51,,&";6Q3"W|th1§|371|§r, ]
, . . . 5 :
U A U - U A Leth (nﬂ"),.h (n,.7:) be the maximum size oflocally thin,
) = < r-locally thin families, respectively.
€ €72 ATk Corollary 3.8:
implies N¥_, F; # 0. Equivalently, there exists suchsingle- . .
user-tracing functiong: 2"l — 7 that for all ¥ C F with g(n,r) <h™(n,r+1) <W'(n,r+1). 2
1< |F| <7, ¢(UnerA) € F. Proof. Here the first inequality comes from Lemma 3.7,
The fo”owing (fo'k'ore) lemma shows that it is enough td’Vh”e the second one follows direCt|y from the definitiorms.
considerk < r + 1 in Definition 3.2. Alon, Fachini and Krner [21] proved the following theo-
Lemma 3.3:Let k > r + 1. Let S1,..., S, be a collection rem.

of sets, each containing at maselements. If for all choices Theorem 3.9:

of 1 <iy <+ <ippq <k, NE1S;, # 0, thennk_ S; # 0. 2 _
Proof: For the sake Jof contradiction, suppose that R (r) < r for r even; 3)
k S, = 0. For all , selecti(a) such thata (a)- 1 .
N1 % =0 a€ 5 S i(a) su % Sita) Ry (r) < COBT for odd, ¢ is constant

Then the intersection of the at magt+ 1) setsS; and S,

is empty. _ u Proof of the upper bound in Theorem 3.4: r is odd,
For every base set size andr, let f(n,r) denote the then(r 4 1) is even. Hence, by (2) and (3),
maximum size of anr-superimposed family, ang(n,r)

deno.te the maximum size of anSUT fami!y. In whgt fqllows, Ry(r) < Ry-(r+ 1) < Ry (r +1) < 2 '
we give bounds on theate of »-SUT families, which is r+1
_ 1gg(n,r) If r is even, then by the monotonicity éf(n,r), (2), and
Ry(r) = hTILrLs;p - 3),
Theorem 3.4:There exist constants,, c, > 0 such that Ry(r) < Rp-(r +1) < Ry (r) < R () < %
C1 Co
— < < = 1 . . .
r2 = Ry(r) < r @) In either case, the upper bound holds in Eq. (1) with= 2.
Proof of the lower boundClearly, if F is r-superimposed then " . ,
it is ~-SUT. Therefore Lemma 3.10 below allows for an alternative, self-contained
, proof of our upper bound otk,, without using the (strong)
g(n,r) > f(n,r) > 2em/m bounds of Theorem 3.9. It gives a sufficient upper bound
where the latter inequality can be found, say, in [3]. This givd8" /" (n,7) whenr is even, which can then be employed
the lower bound in (1). - Wwith the monotonicity argument.
In order to prove the upper bound, we relatsingle-user- Lemma 3.10:Let r be even. IfF is < r-IocaIIy_th_ln, then
tracing to another property investigated in [21], [22]. the mpdulo two sums ofr/2)-sets of. characteristic vectors
Definition 3.5: (Alon, Fachini, Korner, [21]) A familyF is ~associated with members G are all different.
r-locally thin if for all subsets¥’ C F with |F'| = r, there Proof: For the sake of contradiction assume that there are
existsz € [n] such that B two collectionsd; and F, with the same modulo two sums.
Consider the symmetric differenc&€ = F; A F,. Clearly,
d {zeA}=1, it contains at most- sets, and every element incs A is
Aed” covered at least twice (in fact, even times) by member3’of
i.e., there exists an element that appears in exactly one ]
member ofF". Corollary 3.11: If r is even, thenR,,-(r) < 2.
We need the following strengthening of this definition. Proof: By Lemma 3.10,(" ,%’T)) <2 L]
Definition 3.6: A family F is < r-locally thin if for all
subsets¥’ C F with 1 < || < r, there exists such € [n] IV. DISJOINTLY r-SUPERIMPOSED CODES
that

A -1 Another important case implicated in the multiple access
Z {reAt=1 model of Section 1 is when the receiver must distinguish only

AT o ~ betweendisjoint sets of active user§he following definition
Lemma 3.7:If Fis r-SUT then it is< (r +1)-locally thin.  cantyres this notion.

Proof: Contrary to the lemma, assume that there is a pefinition 4.1: A family ¥ < 2 s disjointly r-
subsetd’ = {A1,...,Ak}, 1 < k < r+ 1 for which superimposed if -

S {z € A} # 1 holds for allz € [n]. Fori = 1,...,k, k ¢
let F; = F — {A;}. Since every element is covered at least Uai# B (4)
twice by the members df’, i=1 j=1

is implied by
{Al,AQ,...,Ak}0{317327...,35} =0

k
U a=J A== J 4 while ()F;=0
j=1

Aed, AeTF, AeTy,
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forall 1 <k, ¢<r; A1,As,...,Ax,B1,Bs,...,B, € F. of the set. For every integdr< r < T, the inequality
Despite the seemingly slight difference between Defini-
tions 4.1 and 3.1, the extremal properties of disjointly
. . h 2 T
superimposed families and-superimposed ones are com- Z HS(A) _rcH <m< )
pletely different. Ac(?) r
Let h(n,r) be the maximum size of disjointlyr-
superimposed families.
Lemma 4.2:If F is r-superimposed then it is-SUT. If ¥ holds, where| - || is the Euclidean norm.
is r-SUT, then it is disjointlyr-superimposed. Hence, Proof: By definition of the norm,

f(n,r) < g(n,r) < h(n,r).
Proof: The first part is already proved. The second Z ||s(A) _TCHQ

part follows from the fact that ifF is not disjointly r- .
superimposed, then there exidt= {A;,..., Ay} C ¥ and A€(7)
B = {By,..., B¢} € F such thatu}_, A; = Ui_, B; while = > s(IP+ > r?el> = Y 2res(A) (6)
AR =0 N o A<(?) () A<(?)

While we do not know if there is an exponential gap be-
tweenr-superimposed and-SUT families, the following the-
orem shows that there is such a gap betwesaperimposed Clearly, the second term in (6) give(éf)r2|\c|\2. The third
and disjointlyr-superimposed ones. term is

Theorem 4.3:The rate of disjointlyr-superimposed codes
is bounded as Z n (T— 1> Z (T) el

2res(A) = 2rc v=2 “|c||?,
= < Ralr) < (5 +o() ® o =1 \r

The key to the upper bound is the following observation.

vector sums of--size sets of characteristic vectors associated g L -
with members ofF are all different. with multiplicity (, ~,'), which is the number of distinet-sets

Proof: For the sake of contradiction assume that thet@ which a given vectow is contained. The first term of (6)

are two collectionsF;, ¥, € (f) with the same vector sums.©@" be bounded as follows.

Considerd] = F1\F2 andF, = Fo\ F. Clearly, |F], |F5| <

r, and the vector sums of membersXfandJ,, are the same. 9 2

But thenU 4c57 A = Upeg, B, while 7 and 55 are disjoint, Z Is(A)I" = Z HZ VH

which is a contradiction. [ | Ae() Ae(7) veA
Now, in a vector suny = (yi,... ,y_") of r binary vectors, < Z (m ) Z Vivj)

0 < y* < r holds in every coordinaté. The number of

possible vector sums is thiis + 1)", and therefore

(h(n,r)) < (r a1 = nr

r 1<i<j<T

ViV EF

must hold. This gives an upper bound with a constant factor _ (1" (T —2 Y v,
of 1 in (5). In order to obtain the factor df, we use a second r -2 v

<i<j<
moment method combined with a volume argument: we show 1v2-=v<j7€7T
that coordinates of almost all vectors dhdeviate within/r T-2 9 T-2 9
around the mean (instead of2, as above). In fact, we show T\, 9 Z IvI® ~ r—9 Z vl
ved ved

that if a family I of subsets ofin] has the property that for )
every choice ofr sets, the sum of the corresponding charac- — (T> + (T - 2> HZ VH _ (T - 2) Z v]?
teristic vectors gives a different value, then the upper bound r r—2 veF r—2 veF

in 5 already holds. We prove Theorem 4.3 after Lemma 4.5 T T—2\ 0 o T_9 )
below. =nrl JH )T el - > vl

For a setA C {0,1}" of binary vectors of length, s(A) ' ro? =
stands for the sum of its elements:
For the inequality, we used that the norm square of every
s(A) = Z x vector is at most:, as every vector is binary. Subsequently,

xeA we used that every pair of vectors appears together in ex-

Lemma 4.5:Let F be a set of binary vectors of length actly (f_‘g) sets of sizer, and thus every produst;v; occurs
and letT = |F|. Letc =T~ > ;v be the average vectorthat many times.
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Returning to Eq. (6), by the above computation we get ~ We prove the lower bound in (5) with a probabilistic

) argument. (This proof was also observed Bskb Gyobrfi.)

Z ||S(A> - TCH Let I be a randomly constructed family of siZe whereT’

Ae(?) will be specified later. Every setl; € ¥ is constructed
T T_9 T_9 randomly so that: € A; with probability (1—2-1/) for all z

< W( ) + ( 2>T2|| 1> - ( ) > vi? independently. We prove thak is disjointly r-superimposed
ves with non-zero probability for som@& = 2°"/7), Let A, B C
_ (T)TQHCHZ F be two disjoint setsiA = {A;,...,4;} and B =
{Bi,...,B¢}, where ANB = and1 < k,¢ < r. Define

T T_-2 T-2 A=UF_,A; and B = U’_, B;. Equation (4) is violated if for
wr(D) 4 (C23) e = (123) Sl : Y.

r r_ all z € [n], eithers € ANB orz ¢ AU B. Since allA;
and B; are independent,

(T2 e
—92 -1) ’ _ . .
r r(r p%lffpr]ﬁngngﬂﬁxeAx€Bn
_ z€(n]
Fromr < T follows that—rzw < —T?. Therefore, et L s\
=1 = (P a-a-), O
> ls(A) - 7‘c||2 <nr (T> _ <T - 2) S vl wherep = 271/7. The expected number of disjoint set pairs
r -2 that violate Eq. (4) is thus

A<t)
o g T g £ = zz()( >H+2( Dot @

k=1 £=0
which implies to the desired result.

- k
Proof of Theorem 4.3First we prove the upper bound. Tak By the choice ofp and the fact that, ¢ < 7, (1 —p*) < p

’ .
an arbitrary sef C {0, 1}" of binary vectors of length, such S(l cf ()j f< P Cbonsequ:ntztly;the' ”ghikhag? Sﬂe of Et%. (7)
that the vector sums are different for all choices-afectors. 'S Pounded from above agk, () < min{p"", p" }. Hence the

(By Lemma 4.4, the set of characteristic vectors for a disjointf)'/ght'hand side of Eq. (8) is bounded irom above as

r-superimposed family fulfills this condition.) L&t = |F|. As r k-1 T—k\ .,
in Lemma 4.5, define the average vectoe= 7' _,v. N < ZZ ( ) ( ) "+ Z ( ) 9)
Let A C F be a random subset of sizechosen with uniform k=1=0

probability. Consider the random varialgle= [[s(A)—rc||, the  Now, for T > 2r2 +r — 1,
distance ofs(A) from its mean. By Lemma 4.5 and Jensen’s

inequality [23], the expected distangg < . By Markov’s ity A kol
inequality [23] P neg < /nr. By Zz“kgzz“g T
inequality [23], ¢ / 1
£=0 =0
P{E> A "1nr)} <A = (T> B 1(T>
forall 0 < A < 1. This means that for any constahk A\ < 1, T—k+1\k) = 2\k)’

at least the(1 — \) fraction of all sums forr-size subsets
of F lie within the n-dimensional ballB of radius A\~!/nr
centered at the pointc. Therefore, the number of integer r 9
lattice points inB is an upper bound fofl — \) (Z) Consider N < Z(<T)> . (10)
a larger ballB’ with radius(y/nr/X + /n/2) centered at-c. k

Its volume bounds the number of lattice points fih from In Eq. (10), the largest term is the one for= 1 if T <
above. To see this, draw anrdimensional unit cube centered( k+ 1)p="/2 1 k for all k, i.e., if

at each lattice point iB. All the cubes are withinB’, and to

each integer lattice point a unit volume is associated. Using T<1+2p 2=1+2.2% *
the well-known formula for the volume of anm-dimensional

ball (e.g., [24]), Then by Eg. (10),

T 2
and ((5)) < ((:,:)) /2. Subsequently, Eq. (9) is bounded by

. N < rT%pn
(1- ) (T> < w2 (/\_1\/774' %\/ﬁ) 7 and thusN < 1 if
r I'(l1+n/2) p~ "% 23
whereT'(z) is the complete gamma function. An application T< NG - NG )
of Stirling’s approximation [23] to boundi(1+n/2) leads to Between (*) and (**), (**) is more restrictive for alh andr-.
g lgr N @( ) . @ As g con;equence, therenexists a d.isjo.imlfy.uperimposed
n ~— 2r r n’ family of sizeT = r—l/QZEW — 1, which implies the lower

which is tantamount to the upper bound of (5). bound of (5). ]
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V. OPEN PROBLEMS [14] M. A. Chateauneuf, C. J. Colbourn, D. L. Kreher, E. R. Lamken, and
. . D. C. Torney, “Pooling, lattice square, and Union Jack desigAsi.
We conclude by posing the following open problems. Combin, V0|?/3, Pp. 2?_35, 1999(.1 o
Problem 5.1:1t is known that [15] A.G. Dyachkov, A. J. Macula, Jr., and V. V. Rykov, “New constructions
1 of superimposed codeslEEE Trans. Inform. Theoryvol. 1T-46, pp.
C1 <R (7“) < C21gT 284-290, 2000.
r2 — f - 2 7 [16] A. J. Macula, “Probabilistic nonadaptive group testing in the presence
L of errors and DNA library screening&nn. Combin.vol. 3, pp. 61-69,
Try to diminish the gap between the two bounds. 1999. Y oA PP
Problem 5.2: We show in this paper that [17] H. Q. Ngo and D.-Z. Du, “New constructions of non-adaptive and error-
tolerance pooling designdJiscrete Math. vol. 243, pp. 161-170, 2002.
g (r) < 2 [18] W.-W. Cai, R. Chen, R. A. Gibbs, and A. Bradley, “A clone-array pooled
r2 — 9 ~r strategy for sequencing large genoméshome Resvol. 11, pp. 1619-
L 1623, 2001.
Try to diminish the gap between the two bounds. [19] M. Csirss and A. Milosaviievic, “Pooled genomic indexing (PGI):
Problem 5.3: We show in this paper that mathematical analysis and experiment design.Comput. Biol. 2004,
in press.
1 <R < 1 1 lgr [20] E. S. Lander and M. S. Waterman, “Genomic mapping by fingerprinting
o = n(r) < 9 +o(1)) = random clones: a mathematical analys&nomicsvol. 2, pp. 231-239,
1988.
Try to diminish the gap between the two bounds. [21] N. Alon, E. Fachini, and J. &mer, “Locally thin set families,Combi-

Problem 5.4: Do r-SUT andr-superimposed families differ natorics, Probability and Computingol. 9, pp. 481-488, 2000.

Lo . . . : ] Z. Furedi, A. Gyarfas, and M. Ruszirk “On the maximum size of
significantly, i.e., do the function®,(r) and R (r) differ in (p, Q)-free families, Discrete Math, vol. 257, pp. 385-403, 2002,

magnitude? [23] W. Feller, An Introduction to Probability Theory and Its Applications
Remark.In the course of submitting this paper we Iearn[t24] g‘e"'_V' Ygrki John V\g'ek'l &Jsinséll%% here Packi Lot g
. _ . . onway an . J. . oangpnere Packings, Latlices, an
tha_t Noga Alon and Vera Asodi showed thag(r) = Q(1/r) Groups 2nd ed. New York: Springer-Verlag, 1993,
which answers Problems 5.2 and 5.4.
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