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Let T(r, n) denote the maximum number of subsets of an n-set satisfying the 
condition in the title. It is proved in a purely combinatorial way that for n 
sufficiently large 

log2 T(r, n) log 2 r 
- - ~ < 8  . - -  

n r 2 ' 

holds. © 1994 Academic Press, Inc. 

1. I N T R O D U C T I O N  

The notion of the r-cover-free families was introduced by Kautz and 
Singleton in 1964 [ 17]. They initiated investigating binary codes with the 
property that the disjunction of any ~<r (r>~ 2) codewords are distinct 
(UDr codes). This led them to studying the binary codes with the property 
that none of the codewords is covered by the disjunction of ~<r others 
(superimposed codes, ZFD~ codes; P. Erd6s, P. Frankl and Z. Fiiredi called 
the corresponding set system r-cover-free in [7]).  

Since then many results have been proved about the maximum size of 
these codes. Various authors studied these problems from basically three 
different points of view, and these three lines of investigations were almost 
independent of each other. This is why many results were found first 
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in information theory ([1, 4, 5, 14-17]), were later rediscovered in 
combinatorics ([2, 6, 7, 10, 18, 19]), or in group testing ([12, 13]), and 
vice versa. 

We approach this area from the combinatorial side. Our main goal is to 
estimate the maximal size of the family of subsets of an n-element set with 
the property that no set is covered by the union of r others. 

2. NOTATION AND DEFINITIONS 

Let S be an n-element set. The set of all subsets of S is denoted 2 s. (s) 
denotes the set of all k-subsets of S (k~>0). If IS[ =n ,  then I(s)[ = (~). We 
denote by [n] the set {1,2 .... ,n}, and logx  is always of base2. A set 
system d __ 2 s is called k-uniform if its members are k-sets. It is usually 
supposed that the underlying set of the set systems is [n]. 

We call ~ '  c 2 s r-distinct, if 

k l 

UAiCUBi 
i = 1  j = l  

for any 

{Aa, A2 .... , Ak} ~ {B~, B2 ..... Bt}, 

1 <~k, l<~r; A 1 ,  A 2 . . . . .  A k, B1, B 2 .... , B I s ~ ' .  ~ c 2  s is r-cover-free, if 

Ao 5~ A I  U A 2  U " "  o A  r 

holds for all distinct A0, AI ..... Ar E ~ .  ~-* c 2 s is < r  part intersecting, if 

1 
[AinAj[  <-rain{JAil ,  [Aj]} 

r 

for any distinct Ai, A j E ~ *  holds. We denote by T'(r, n), T(r, n), T*(r, n) 
and T'(r, n, k), T(r, n, k), T*(r, n, k) the maximum cardinality of the 
corresponding set systems in the general and in the k-uniform eases, 
respectively. We provide upper bounds on these functions for r fixed and 
n tending to infinity. We call 

R(r) = lim sup 
n ~ o o  n 

log T(r, n) 

the rate of the r-cover-free family. The following proposition is obvious 
from the definitions. 
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PROPOSITION 2.1. I f  ~ is <r part intersecting, then ~ & r-cover-free; 
and if  ,.~ is r-cover-free, then ~ is r-distinct. Hence 

T*(r, n) <~ T(r, n) <~ T'(r, n), and T*(r, n, k) <~ T(r, n, k) <~ T'(r, n, k). 

The following upper and lower bounds were proved in [-1, 4, 5, 7, 13]: 
there exist two (absolute) constants c1, c2 such that 

cl < log  T(r, n)<e2 (1) 
r 2 n r 

for any n. In most papers the lower bound is proved by probabilistic 
methods. In [13] Hwang and S6s used a greedy-type algorithm to generate 
< r  part intersecting families for proving the lower bound. The upper 
bound was proved using the observation that, by definition, ~2~= ~ (T')~< 2 n. 
The gap between the upper and lower bounds is rather large. Dyachkov 
and Rykov obtained a better upper bound [4], 

log T(r, n) log r 
C 3 - -  (2) 

n F 2 

for some absolute constant c 3 and any n. Their proof is rather involved. 
Here we give a simple and purely combinatorial proof of this result. 

3. THE UPPER BOUND 

First we have to prove some lemmata. 

LEMMA 3.1. I f  r divides k then ((nl/(k)) 
T(r, n, k) <~ r k k (3) 

r ; 

Proof Let ~- be a k-uniform r-cover-free family and let r divide k. Let 
Ao be an arbitrary element of ~ .  By Baranyai's Theorem [3] (asserting 
that if r divides k then the r-uniform complete hypergraph on k vertices has 
one-factorisation) one can list all subsets of size k/r of A0 in the following 
way: 

(a) in each row there is a partition of Ao; 

(b) each subset is listed only once. 
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So each row contains r subsets and the number of rows is s = (~r)/r. This 
family of partitions can be represented in the matrix form 

BI, x B1,2 . . .  B1, ~ 

B2,1 B2,2 - - .  B2, r 

B~,I B~.z "'" B ..... 

where (a) means that (J~=i Be, j = A o  for any 1 <<.i<~s and (b) means that 
Bi,: ¢ Bk, t for any (i, j )  # (k, l). 

For  any 1 ~< i ~< s the ith row contains at least one set Bi, j which is not 
contained in any other A,je ~ .  Indeed, otherwise for some i we could find 
Avj ( j =  l .... , r) that Be,/~_A~sCAo, and therefore 

A o = B i ,  l u B i ,  z u  . . .  uB~ ,rC_Avl~A~2u  . . .  ~Avr  , 

which would violate the condition. 
Hence A0 has at least s subsets of size k/r, which are not contained in 

any other A j e  ~ (own subsets). Since the number of all subsets of the 
underlying set is (k~r), we get that 

I ~ l s = [ Y l  k r ~  k " | 

\7/1 \7/ 
From Lemma 3.1 the following stronger version of the lemma from [4]  

follows trivially. 

LEMMA 3.2. 

Remark  1. 
t = rk / r  7 then 

T(r, n, k)  <. r (4) 

Proposition 2.1 of Erd6s et al. [7]  asserts that if we set 

( ')2 ') T(r ,n ,k)<~ t t - 1  " (,) 

This result was obtained by using the following 
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LEMMA 1F (Frankl [-8]). I f  W is a family oft-subsets of  a k-set, and for 
any r sets 

L 
Fx ..... F, e Y  (] Fj ¢ 5Z5, 

j = l  

if r t / ( r - 1 )  <<. k, then I~[ ~<(tk-ll). 

In the case when r does not divide k, (*) is stronger than (4), but since 
it does not give a better exponent for T(r, n, k), we use the inequality of 
Lemma 3.1. 

It is also worth mentioning that in [9, Theorem 3.4] Frankl and Ffiredi 
proved that for fixed k and r 

lira T(r, n, k)/(:) 
n - ~ .  oo 

exists and equals ( (~) -m(k ,  t, l)) -1, where l = k - r ( t -  1 ) -  1. (For the 
definition of m(k, t, l) see [9].) 

Obviously 

T(r, n) <. n. max T(r, n, k) (5) 
l < ~ k < ~ n  

and by (1) T(r, n) is exponential in n. So the factor n is insignificant in (5). 
This leads to the following question: for which k does T(r, n, k) attains its 
maximum? If we knew this, we could estimate T(r, n) from (4). But for 
k = n/2, (4) yields only 

log T(r, n, n/2) <~ c 
2 r 

(for some constant c). 

PROPOSITION 3.1. T(r, n) <~ T(r, 2n, n). 

Proof Let ~ - =  {A1,..., AT}, A ; ~  I-n]. For i =  1 .... , T let B i=  { x + n :  
x~-gi} (Bi___ { n + l  ..... 2n}), Ci=AivaB~(Ci c _ 1,2n]), and. ,  ~ u =  {C1 .... , Cr}. 
~ "  is an n-uniform r-cover-free family on a 2n element set, I ~ ]  = I~[.  | 

By Proposition 3.1, 

log T(r, 2n, n) 
R(r) ~< 2. lim sup - 2n ' 

n ---~ o o  
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so the size of the n/2 uniform r-cover-free families can be very large. (The 
rate is at most  two times lower than in the nonuniform case.) Thus, if we 
want to get a better upper bound for (log T(r, n))/n than c/r, it is not 
enough to use the inequality (5). We have to compress somehow the 
elements of ~ without losing the r-cover-free property, since for smaller k 
(5) gives a better found. 

LEMMA 3.3. Let Ai be an arbitrary element of Y = {A1 ,  A2 ,  ..., AT} and 
B~ ~_Ai an arbitrary subset of  A~. I f @  is r-cover-free, then 

(a) ~ 1 =  {Aj.\B~}{_~],...,r is (r-- 1)-cover-free, 

(b) I~11 = T -  1. 

Proof (a) Suppose that 

A j0 \ B  z _~ (A jl \B,  ) w (A j2 \B  i ) w ... w (Ajr_l \B, ) 

for some {Jo, Ja, ..., Jr--~ } --~ I T ]  \{i}. Then 

Ajo ~_ A j l  k.) A j 2  L) . .  • w Ajr_l • A i ,  

which is a contradiction. 

(b,)  For  any Aj¢A~ we have A s ~ A~, so we threw out only A~ 
from ~-. 

(b2) A k \ B i ¢ A t \ B  ~ if k%l, so we did not merge any two distinct 
members of o ~ .  Indeed, suppose that Ak\B~=AI\B  ~ and k ¢ / .  Then 
Ak--~ Az ~ A~, which is a contradiction (r >~ 2). | 

THEOREM 3.1. 

log T(r, n) ~< 8 log r 
n " r ~ '  (6) 

Proof First we assume that r 2 divides n and n/r is even. Let ~ be an 
arbitrary r-cover-free family. We use the following set compression 
algorithm. 

(1) ~ 0 = g .  

(2) If  every element of ~-i is of size <~2n/r, then o ~ = ~  i. If  
o~i=  {A~i~,A(~), A~)_~} contains a set A(~) of size >2n/r, then put "'" J0 
~ i + 1  f A ( i ) \ A ( i ) ~ j o ~ j  

~--" [ J \ JO k j = l , . . . , T - - i "  

In each step of this algorithm we throw out more than 2n/r elements. 
Since the underlying set of ~- is of size n, our algorithm will stop in at most 
r/2 steps. Suppose that during this algorithm we threw out p elements from 

582a/66/2-9 
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the underlying set in q steps. Let T(r,n, <~k) denote the maximum 
cardinality of an r-cover-free family of subsets of In] of size ~<k. Then, by 
Lemma 3.3 and set compression algorithm, 

T(r,n)<~ T ( r - q , n - p ,  <~ 2-~)+q<~ T(2, n, <~ --2n~r 

<~ E -~,n,k +-~ 2k 2k 
k = l  k = l  

T -7 

<~ E 5 <~ " ' 4 , , ,  
k = l  _ _  7 

Let h(x) (0 < x <  1) be the binary entropy function; that is, 

r 
+~ 

r 
+~ 

h(x)=xlogl_+(l_x)log 1 
x l -x"  

Then, by [- 11 ], 

n) ~< 2,.h(~). nk~, 
cn 

where kx is an absolute constant. Therefore 

(4) 
log T(r, n)<~ (klq- 1).logn+n .h ~5 

n / 4  r 2 + ~ ~ ) / 1  _ 4 \  log (r_T~_ 4) ) r  2 =o(n)+ ~Tl°g~- 
=o(n)+n(810gr 8 ~ ( 4 y:-4) 

r2 r2 I- log l+r-5--~_4j J 

//8 logr 8 41oge'] ~< o(n )  + n 
r 2 r 2 + - - - V - - ]  \ 

<~ o(n) + 8 log r r--5-.n. 

If r 2 does not divide n or r is odd, the same proof works; we only have to 
be more careful with the integer parts. 



Remark 2. 
than of 8. 
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A more careful computation would give a better constant 

4. FINAL REMARKS 

The most important thing would be to narrow the gap between the 
upper and lower bounds on T(r,n), (see, e.g., Hwang and Sds [-13]). 
Of course, the same question applies also to T*(r, n), T(r, n), and T'(r, n). 
In [ 17 ] one can find the proof of the following theorem. 

If • '  is r-distinct then it is ( r -  1)-cover-free. 
So by this theorem and Proposition 2.1 T(r, n) and T'(r, n) are very 

closed. On the other hand, if k >>. n/r, then by Johnson's second bound [16] 
T*(r, n, k) is only polynomial in n. The proof of the lower bound suggests 
that it attains the maximum in k at about n/(r + 1). By the set compression 
algorithm we suppose that T(r, n, k) attains the maximum in k about n/r, 
too. This suggests that T(r,n) and T*(r,n) are neither significantly 
different. 

We consider the following problem. The estimations in the proof of 
Theorem 3.1 are very loose. Is it possible to prove the R(r)=o(log r/r 2) 
upper bound using the set compression algorithm? 
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