RESEARCH PROBLEM: HELLY-TYPE THEOREMS FOR ELLIPSES

MÁRTON NASZÓDI

Helly's theorem states that if for a finite family of convex sets in \mathbb{R}^d , any d+1 members have a non-empty intersection, then the family has a non-empty intersection.

This result is the starting point of a range of exciting geometric and combinatorial questions on intersection patterns of convex sets. One particular direction is looking at quantitative versions, where instead of requiring the intersection to be non-empty (contain a point), we consider intersections of a certain volume, or those that contain an ellipsoid of a certain volume. Here is a *colorful* example.

Theorem 1 (Colorful Helly-type theorem for ellipsoids). Let C_1, \ldots, C_{3d} be finite families (color classes) of convex bodies in \mathbb{R}^d . Assume that for any colorful choice $C_1 \in C_1, \ldots, C_{3d} \in C_{3d}$ of 3d sets, the intersection $\bigcap_{i=1}^{3d} C_i$ contains an ellipsoid of volume at least 1.

Then there is an $1 \leq i \leq 3d$ such that $\bigcap_{C \in \mathcal{C}_i} C$ contains an ellipsoid of volume at least d^{-10d^2} .

One particular **open problem** is the following question on the plane.

Does the above theorem hold for d=2 when the number of color classes is not 6 (= 3d), but 5 or 4?

Practice questions. It is not necessary to solve all of them to participate.

- (1) What is the largest size of a set of pairwise orthogonal unit vectors in \mathbb{R}^d ?
- (2) Let \mathbf{n} and \mathbf{v} be non-zero vectors in \mathbb{R}^d . It is known that \mathbf{v} can be written as $\mathbf{v} = \mathbf{v}_p + \mathbf{v}_o$, where \mathbf{v}_p is parallel with \mathbf{n} , and \mathbf{v}_o is orthogonal to \mathbf{n} . How do you compute \mathbf{v}_p and \mathbf{v}_o ? *Hint*: You can use scalar product.
- (3) What is the largest size of a set of unit vectors in \mathbb{R}^d where the angle of any two vectors is obtuse (greater than $\pi/2$)?
- (4) Let K_1, \ldots, K_n be compact (closed and bounded) convex sets in \mathbb{R}^d with $\bigcap_{i=1}^n K_i = \emptyset$. Show that there are halfspaces H_1, \ldots, H_n such that $K_1 \subset H_1, \ldots, K_n \subset H_n$ with $\bigcap_{i=1}^n H_i = \emptyset$. Hint: Do you know this statement for n = 2? If not, can you prove it (not obvious)? Can you deduce the general case from the n = 2 case?

M. N.: Alfréd Rényi Inst. of Math., Budapest, Hungary and Dept. of Geometry, Eötvös University, Budapest, Hungary

E-mail address: marton.naszodi@math.elte.hu