Instructor: Dr. Gergely AMBRUS

Text: Classnotes by the lecturer

Prerequisite:  basic notions of calculus, some classical Euclidean geometry.

Course description: This course will concentrate on the combinatorial aspects of geometric structures: discrete sets of points, lines, and convex sets. The connection of geometry and combinatorics has been extremely fruitful in the last century, and the results obtained from this dual viewpoint had found applications in a broad range of subjects from number theory to analysis and become the cornerstone of theoretical computer science as well. We are going to start from the elementary notions of Euclidean geometry, therefore no special prerequisite is needed. Besides the classical theorems, we will also learn about recent developments of the last decade. A large part of discrete and combinatorial geometry has rooted in Budapest, making it a perfect location to study this beautiful subject!