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Abstract: Reflecting on problems posed by Gyárfás [Ramsey Theory
Yesterday, Today and Tomorrow, Birkhäuser, Basel, 2010, pp. 77–96] and
Mubayi [Electron J Combin 9 (2002), #R42], we show in this note that every
r -edge-coloring of Kn contains a monochromatic component of diameter at
most five on at least n / (r−1) vertices. � 2011 Wiley Periodicals, Inc. J Graph Theory 69:

337–340, 2012
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1. MONOCHROMATIC COMPONENTS IN EDGE-COLORINGS

The aim of Ramsey theory is to find large monochromatic structures in r-edge-colorings
of a graph G. The most investigated case is when G=Kn; numerous articles and books
have been published on this topic.
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A simple observation—in fact a remark of Erdős and Rado—is that every 2-edge-
coloring of Kn contains a monochromatic spanning component. One can also require
further properties, e.g., every 2-edge-coloring of Kn contains a monochromatic span-
ning component of diameter at most three [1, 7]. The maximum size of the largest
monochromatic component of diameter at most two has been determined by Erdős and
Fowler [2].

Theorem 1 (Erdős and Fowler [2]). Every 2-edge-coloring of Kn contains a
monochromatic component of diameter ≤2 on at least 3n /4 vertices.

The following example shows that the bound given in Theorem 1 is sharp. Partition
the set of vertices evenly into parts A1,A2,A3,A4 of size ∼n /4. For j>i color all edges
red between Ai and Aj if j− i=1, else color them blue. Color the edges inside each Ai
arbitrarily.

A double star is a tree obtained by connecting the centers of two vertex disjoint
stars by an edge. Clearly, a double star has diameter three. In case of two colors,
the maximum size of a monochromatic double star is similarly ∼3n /4 [6]. A random
coloring provides an example showing that the bound is best possible.

In case of three colors, the maximum size of a monochromatic component is ∼n /2.
Moreover, Mubayi [7] showed that the diameter of the large monochromatic component
is also bounded.

Theorem 2 (Mubayi [7]). Every 3-edge-coloring of Kn contains a monochromatic
component of diameter ≤4 on at least �n /2� (n /2+1 if n≡2 (mod 4)) vertices.

In case of three colors, the maximum size of a monochromatic double star is not
known yet; the best known lower and upper bounds are 4n /9 and n /2 [6], respectively.

The aim of this article is to show that in every r-edge-coloring of Kn, there is large
monochromatic component of a small constant diameter. The following theorem is a
most general result of this type.

Theorem 3 (Tonoyan [8]). Let D,r≥1, d≥D, n≥2. Then there exists an integer
t=R(D,r,n,d) such that every r-edge coloring of a graph G on at least t vertices with
diameter D possesses a monochromatic component of diameter at most d on at least
n vertices.

Notice that Tonoyan’s general theorem gives no explicit bounds on the size and
diameter of the monochromatic components. The size of the largest monochromatic
component in r-edge-colorings of Kn is related to the existence of affine planes of
order (r−1) as follows. Given positive integers n,r, let f (n,r) be the largest number t
so that every r-edge-coloring of Kn possesses a monochromatic component on at least
t vertices. The following theorem provides a lower bound on f (n,r).

Theorem 4 (Gyárfás [4]). f (n,r)≥n / (r−1) and the equality holds if (r−1)2|n and
there is an affine plane of order r−1.

See [5] for the recent developments and intriguing problems on monochromatic
components in the case when (r−1)2 does not divide n. Füredi [3] proved a stronger
lower bound on f (n,r) in the case when an affine plane of order r−1 does not
exist.
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Theorem 5 (Füredi [3]). If an affine plane of order r−1 does not exist, then f (n,r)≥
n / (r−1−(r−1)−1).

Theorems 4 and 5 suggest that it might be very difficult to determine f (n,r) as these
values depend on the existence of the affine plane of given order.

There are relatively large monochromatic components of diameter at most three.

Theorem 6 (Mubayi [7]). Every r-edge-coloring of Kn contains a monochromatic
component of diameter ≤3 on at least n / (r−1+r−1) vertices.

This was improved in [6].

Theorem 7 (Gyárfás and Sárközy [6]). Every r-edge-coloring of Kn contains a
monochromatic double star on at least (n(r+1)+r−1) /r2 vertices.

We point out that Theorems 6 and 7 prove the existence of a smaller monochromatic
component than Theorem 4. It may even be true that every r-edge-coloring of Kn
contains a monochromatic double star with at least n / (r−1) vertices.

Problem 1 (Gyárfás, Problem 4.2 in [5]). For r≥3, is there a monochromatic
double star of size asymptotic to n / (r−1) in every r-coloring of Kn?

A weaker version of the problem reads as follows.

Problem 2 (Gyárfás, Problem 4.3 in [5]). Given positive numbers n, r, is there a
constant d (perhaps d=3) such that in every r-coloring of Kn there is a monochromatic
subgraph of diameter at most d with at least n / (r−1) vertices?

As we have already mentioned, for r=2 the affirmative answer to Problem 2 follows
from [1, 7] with d=3 and for r=3 it follows from Theorem 2 with d=4.

2. BOUNDING THE DIAMETER

Although Mubayi [7] wrote that determining the size of the maximum monochromatic
component of diameter d≥3 “seems to be difficult”, we answer Problem 2 in the
affirmative with d=5.

Theorem 8. In every r-edge-coloring of Kn, there is a monochromatic subgraph of
diameter at most 5 on at least n / (r−1) vertices.

Proof. Consider an r-edge-coloring c of Kn on vertex set [n] in colors {1, . . . ,r}. Let
Gi be the spanning subgraph of Kn with the edges colored in i. If Gi is not connected
for some 1≤ i≤r, A being its component, then all edges in between A and [n]\A are
colored in the remaining r−1 colors. We shall use the following theorem, which is
proved by a Cauchy–Schwarz-type counting argument.

Theorem 9 (Mubayi [7]). In every q-edge-coloring the complete bipartite graph Kk,�,
there is a monochromatic double star of order (k+�) /q.

Then, by Theorem 9 the coloring c contains a required monochromatic subgraph
even of diameter 3.
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So, assume now that Gi is connected for all 1≤ i≤r. Let v be a vertex of Kn. Then
by di(v) we denote the degree of v in Gi. Further, assume wlog that the maximum
monochromatic degree is attained at a vertex v in the color r, i.e., dr(v)≥di(w) for all
w∈ [n] and 1≤ i≤r. If all vertices in Gr were within distance 2 from v, then Gr would
constitute a monochromatic component of diameter 4 on even n vertices. So we are left
with the case when there is a vertex w at a distance 3 from v in Gr. Hence, the neighbors
of v and w are disjoint. We will consider two subcases. If dr(v)+dr(w)≥n / (r−1)−2,
then we are done. Indeed, the graph induced by the edges of a v−w path of length 3
together with the edges incident to v and w constitutes a monochromatic subgraph of
diameter 5 on at least n / (r−1) vertices. Finally, let dr(v)+dr(w)<n / (r−1)−2. Clearly,

n−1 = (d1(w)+·· ·+dr−2(w))+(dr−1(w)+dr(w)) (1)

≤ (r−2)dr(v)+(dr(v)+dr(w))<(r−2)dr(v)+n / (r−1)−2, (2)

which is equivalent to

n
r−2

r−1
+1<(r−2)dr(v). (3)

This implies dr(v)>n / (r−1), i.e., in this case we have a monochromatic star of the
desired order.
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