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Abstract: Reflecting on problems posed by Gyarfas [Ramsey Theory
Yesterday, Today and Tomorrow, Birkhauser, Basel, 2010, pp. 77-96] and
Mubayi [Electron J Combin 9 (2002), #R42], we show in this note that every
r-edge-coloring of K, contains a monochromatic component of diameter at
most five on at least n/(r—1) vertices. © 2011 Wiley Periodicals, Inc. J Graph Theory 69:
337-340, 2012
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1. MONOCHROMATIC COMPONENTS IN EDGE-COLORINGS

The aim of Ramsey theory is to find large monochromatic structures in r-edge-colorings
of a graph G. The most investigated case is when G =K},; numerous articles and books
have been published on this topic.
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A simple observation—in fact a remark of Erd6és and Rado—is that every 2-edge-
coloring of K, contains a monochromatic spanning component. One can also require
further properties, e.g., every 2-edge-coloring of K, contains a monochromatic span-
ning component of diameter at most three [1,7]. The maximum size of the largest
monochromatic component of diameter at most two has been determined by Erd6s and
Fowler [2].

Theorem 1 (Erd6s and Fowler [2]). Every 2-edge-coloring of K, contains a
monochromatic component of diameter <2 on at least 3n/4 vertices.

The following example shows that the bound given in Theorem 1 is sharp. Partition
the set of vertices evenly into parts A1,A;,A3,A4 of size ~n/4. For j>i color all edges
red between A; and A; if j—i=1, else color them blue. Color the edges inside each A;
arbitrarily.

A double star is a tree obtained by connecting the centers of two vertex disjoint
stars by an edge. Clearly, a double star has diameter three. In case of two colors,
the maximum size of a monochromatic double star is similarly ~3nr/4 [6]. A random
coloring provides an example showing that the bound is best possible.

In case of three colors, the maximum size of a monochromatic component is ~n/2.
Moreover, Mubayi [7] showed that the diameter of the large monochromatic component
is also bounded.

Theorem 2 (Mubayi [7]). Every 3-edge-coloring of K, contains a monochromatic
component of diameter <4 on at least [n/2] (n/2+1 if n=2 (mod 4)) vertices.

In case of three colors, the maximum size of a monochromatic double star is not
known yet; the best known lower and upper bounds are 4n/9 and n/2 [6], respectively.

The aim of this article is to show that in every r-edge-coloring of K}, there is large
monochromatic component of a small constant diameter. The following theorem is a
most general result of this type.

Theorem 3 (Tonoyan [8]). Let D,r>1, d>D, n>2. Then there exists an integer
t=R(D,r,n,d) such that every r-edge coloring of a graph G on at least t vertices with
diameter D possesses a monochromatic component of diameter at most d on at least
n vertices.

Notice that Tonoyan’s general theorem gives no explicit bounds on the size and
diameter of the monochromatic components. The size of the largest monochromatic
component in r-edge-colorings of K, is related to the existence of affine planes of
order (r—1) as follows. Given positive integers n,r, let f(n,r) be the largest number ¢
so that every r-edge-coloring of K,, possesses a monochromatic component on at least
t vertices. The following theorem provides a lower bound on f(n,r).

Theorem 4 (Gyarfas [4]). f(n,r)>n/(r—1) and the equality holds if (r—1)*|n and
there is an affine plane of order r—1.

See [5] for the recent developments and intriguing problems on monochromatic
components in the case when (r— 1)? does not divide n. Fiiredi [3] proved a stronger
lower bound on f(n,r) in the case when an affine plane of order r—1 does not
exist.
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Theorem 5 (Firedi [3]). If an affine plane of order r—1 does not exist, then f(n,r) >
nl(r—1—@r—1)7".

Theorems 4 and 5 suggest that it might be very difficult to determine f(n,r) as these
values depend on the existence of the affine plane of given order.
There are relatively large monochromatic components of diameter at most three.

Theorem 6 (Mubayi [7]). Every r-edge-coloring of K,, contains a monochromatic
component of diameter <3 on at least n/(r—1+r~1) vertices.

This was improved in [6].

Theorem 7 (Gyarfas and Sarkozy [6]). Every r-edge-coloring of K, contains a
monochromatic double star on at least (n(r+1)-+r—1)/r? vertices.

We point out that Theorems 6 and 7 prove the existence of a smaller monochromatic
component than Theorem 4. It may even be true that every r-edge-coloring of K,
contains a monochromatic double star with at least n/(r—1) vertices.

Problem 1 (Gyarfas, Problem 4.2 in [5]). For r>3, is there a monochromatic
double star of size asymptotic to n/(r—1) in every r-coloring of K,?

A weaker version of the problem reads as follows.

Problem 2 (Gyarfas, Problem 4.3 in [5]). Given positive numbers n, r, is there a
constant d (perhaps d=3) such that in every r-coloring of K, there is a monochromatic
subgraph of diameter at most d with at least n/(r—1) vertices?

As we have already mentioned, for r=2 the affirmative answer to Problem 2 follows
from [1, 7] with d=3 and for r=3 it follows from Theorem 2 with d=4.

2. BOUNDING THE DIAMETER

Although Mubayi [7] wrote that determining the size of the maximum monochromatic
component of diameter d>3 “seems to be difficult”, we answer Problem 2 in the
affirmative with d=S5.

Theorem 8. In every r-edge-coloring of K, there is a monochromatic subgraph of
diameter at most 5 on at least n/(r—1) vertices.

Proof. Consider an r-edge-coloring ¢ of K,, on vertex set [#] in colors {1,...,r}. Let
G; be the spanning subgraph of K;, with the edges colored in i. If G; is not connected
for some 1<i<r, A being its component, then all edges in between A and [n]\A are
colored in the remaining r— 1 colors. We shall use the following theorem, which is
proved by a Cauchy—Schwarz-type counting argument.

Theorem 9 (Mubayi [7]). Inevery g-edge-coloring the complete bipartite graph Ki ¢,
there is a monochromatic double star of order (k4 )/ q.

Then, by Theorem 9 the coloring ¢ contains a required monochromatic subgraph
even of diameter 3.
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So, assume now that G; is connected for all 1 <i<r. Let v be a vertex of K,,. Then
by di(v) we denote the degree of v in G;. Further, assume wlog that the maximum
monochromatic degree is attained at a vertex v in the color r, i.e., d-(v) >d;(w) for all
we[n] and 1 <i<r. If all vertices in G, were within distance 2 from v, then G, would
constitute a monochromatic component of diameter 4 on even n vertices. So we are left
with the case when there is a vertex w at a distance 3 from v in G,. Hence, the neighbors
of v and w are disjoint. We will consider two subcases. If d,.(v)+d,(w)>n/(r—1)—2,
then we are done. Indeed, the graph induced by the edges of a v—w path of length 3
together with the edges incident to v and w constitutes a monochromatic subgraph of
diameter 5 on at least n/(r — 1) vertices. Finally, let d.(v)+d,(w)<n/(r — 1) — 2. Clearly,

n—1=(diw+---+dr2W)+(dr—1(w)+dr(w)) ey
< (r=2d,)+(d,()+d (W) <(r=2)d,(v)+n/(r—1)-2, 2

which is equivalent to
r—2
n—1+1<(r—2)dr(v). 3)
r—

This implies d,(v)>n/(r—1), i.e., in this case we have a monochromatic star of the
desired order.
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