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Some background and preliminary questions

Polyhedra may be regarded as purely geometric objects, however, they are also
often intuitively identified with solids. Among the most obvious sources of such
intuition are dice which appear in various polyhedral shapes: while classical,
cubic dice have 6 faces, a large diversity of other dice exists as well: dice with
2,3,4,6,8,10,12, 16, 20, 24, 30 and 100 faces appear in various games [9]. The key
idea behind throwing dice is that each of the aforementioned faces is associated
with a stable mechanical equilibrium point where dice may be at rest on a
horizontal plane. A die is called fair if the probabilities to rest on any face (after
a random throw) are equal [5], otherwise they are called loaded [4]. The concept
of mechanical equilibrium may also be defined in purely geometric terms:

Definition 1 Let P be a convex polyhedron, let interP and bdP denote its in-
terior and boundary, respectively and let c € interP. We say that ¢ € bdP is an
equilibrium point of P with respect to c if the plane through q and perpendicular
to [c,q] supports P at q.

A support plane is a generalization of the tangent plane for non-smooth objects.
While it is a central concept of convex geometry its name may be related to the
mechanical concept of equilibrium. If ¢ coincides with the center of mass of P,
then equilibrium points gain intuitive interpretation as locations on bdP where
P may be balanced if it is supported on a horizontal surface (identical to the
support plane) without friction in the presence of uniform gravity. Equilibrium
points may belong to three stability types: faces may carry stable equilibria, ver-
tices may carry unstable equilibria and edges may carry saddle-type equilibria.
Denoting their respective numbers by S, U, H, by the Poincaré-Hopf formula [1]
for a convex polyhedron one obtains the following relation for them:

S+U—-H =2, (1)
which is strongly reminiscent of the well-known Euler formula

fHv—e=2, (2)



relating the respective numbers f, v and e of the faces, vertices and edges
of a convex polyhedron. In the case of a regular, homogeneous, cubic dice
the formulae (1) and (2) appear to express the same fact, however, in case of
irregular polyhedra the connection is much less apparent. While the striking
similarity between (1) and (2) can only be fully explained via deep topological
and analytic ideas [1], there exists some connection at an elementary, geometric
level. To explain this connection, we define

N = S+U+H, 3)
n = fH+vte.

Figure 1 shows three polyhedra where the values for all these quantities can be
compared.

.
L

f 6 7 7

v 8 10 10

e 12 15 15
n=f+v+e 26 32 32
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u o 8 10 8

H ° 12 15 12
N=S+U+H 26 32 26
C=n-N 0 0 6

Figure 1: (a) Three polyhedra interpreted as homogeneous solids with given
numbers for faces (f), vertices (v), edges (e), stable equilibria (), unstable
equilibria (U) and saddle-type equilibria (H ), their respective sums n = f+v+e,
N = S + U + H and mechanical complexity C = n — N (given in Definition
2). (b) Polyhedron in column a3 shown on the overlay of the (S,U) and (f,v)
grids, complexity obtained from distance between corresponding diagonals.

The numbers S, U, H may serve, from the mechanical point of view, as a first-
order characterization of P and via (1) the triplet (S,U, H) may be uniquely
represented by the pair (S,U), which is called primary equilibrium class of P
[8]. Based on this, we denote by (S,U)¥ the family of all convex polyhedra
having S stable and U unstable equilibrium points with respect to their centers
of mass. In an analogous manner, the numbers (v, e, f) (also called the f-vector
of P) serve as a first-order combinatorial characterization of P, and via (2) they
may be uniquely represented by the pair (f,v). Here, we call the the family of
all convex polyhedra having v vertices and f faces the primary combinatorial



class of P, and denote it by (f,v)¢. The face structure of a convex polyhedron
P permits a finer combinatorial description of P. In the literature, the family
of convex polyhedra having the same face lattice is called a combinatorial class;
here we call it a secondary combinatorial class, for more details the interested
reader is referred to [6]. While it is immediately clear that for any polyhedron
P we have

f=58v>U, (4)

inverse type relationships (e.g. defining the minimal number of faces and vertices
for given numbers of equilibria) are much less obvious.
Apparently, a necessary condition for any dice to be fair can be stated as

f=5.

Question 1 Construct polyhedra with f = S. (a) give examples for some values
of f, (b) give a construction for arbitrary values of f.

The opposite extreme case (when a polyhedron is stable only on one of its
faces) appears to be far more complex and several papers [2, 3, 7] are devoted
to this subject. Motivated by this intuition we define the mechanical complexity
of polyhedra.

Definition 2 Let P be a convex polyhedron and let N(P),n(P) denote the total
number of its equilibria and the total number of its k-faces (i. e., faces of k
dimensions; now k = 2,1,0) respectively. Then C(P) = n(P) — N(P) is called
the mechanical complexity of P.

Mechanical complexity may not only be associated with individual polyhedra
but also with primary equilibrium classes.

Definition 3 If (S,U)¥ is a primary equilibrium class, then the quantity
C(S,U) =inf{C(P): P € (S, U)¥}

is called the mechanical complexity of (S,U)¥.

Our goal is to find the values of C(S,U) for all primary equilibrium classes.

Question 2 Try to find C(i,4) fori=1,2,3,4,5,6.

Remark 1 Recommended order: 4,5,6,3,2,1. The i = 4 case is trivial. On
the other hand, if you find C(1,1) then you might be eligible for the prize P =
1.000.000/C(1,1) in U.S. dollars.

Question 3 Try to find the nevessary and sufficient condition for C(i,j) = 0.
You may guess and you may try to prove your guess.
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