Instructor: Dr. András STIPSICZ

Topics covered:

  1. Link diagrams, Reidemeister's theorem, special classes of knots
  2. Knot invariants
  3. The Alexander polynomial and its basic properties
  4. Matrix invariants
  5. The Jones polynomial and minimal crossing numbers
  6. 3-manifolds and Dehn surgeries
  7. Heegaard diagrams
  8. Kirby diagrams of 4-manifolds
  9. Morse theory, existence results
  10. The concordance group
  11. Khovanov homology