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CHAPTER 2

Knots and links in S
3

In this chapter we collect the notions and results from classical knot theory most
relevant to our subsequent discussions. In Section 2.1 we provide some basic defi-
nitions and describe some families of knots that will serve as guiding examples in
the further chapters. We discuss Seifert surfaces in Section 2.2, and we define the
Seifert form in Section 2.3. Based on this notion, we define the signature of a knot
and use it to bound the unknotting number. We devote Section 2.4 to the definition
and basic properties of the Alexander polynomial (returning to its multi-variable
generalization in Section 11.5). Extending ideas from Section 2.3, in Section 2.6
we give a proof of the lower bound of the slice genus provided by the signature.
Finally, in Section 2.7 we use the Goeritz matrix associated to a diagram to derive
a simple formula for the signature of a knot. This material is standard; for a more
detailed treatment see [28, 119, 199]. Further basic theorems of knot theory are
collected in Appendix B.

2.1. Knots and links

Definition 2.1.1. An ℓ–component link L in S3 is a collection of ℓ disjoint
smoothly embedded simple closed curves. A 1–component link K is a knot . The
links we consider in this book will typically be oriented. If we want to emphasize

the choice of an orientation, we write ~L for a link, equipped with its orientation.

The links ~L1, ~L2 are equivalent if they are ambiently isotopic, that is, there is
a smooth map H : S3 × [0, 1] → S3 such that Ht = H|S3×{t} is a diffeomorphism

for each t ∈ [0, 1] , H0 =idS3 , H1(~L1) = ~L2 and H1 preserves the orientation on
the components. An equivalence class of links under this equivalence relation is
called a link (or knot) type .

The above definition can be made with R3 = S3 \ {p} instead of S3 , but the
theory is the same: two knots in R3 are equivalent if and only if they are equivalent
when viewed in S3 . For this reason, we think of links as embedded in R3 or S3

interchangeably.

Two ℓ -component links ~Li (i = 0, 1) are isotopic if the two smooth maps fi : ∪
ℓ
j=1

S1 → S3 defining the links are isotopic, that is, there is a smooth map F : (∪ℓj=1S
1)×

[0, 1] → S3 which has the property that Ft = F |(∪ℓ
j=1

S1)×{t} are n -component links

with Fi = fi (i = 0, 1). By the isotopy extension theorem [87, Section 8, Theo-
rem 1.6], two links are ambiently isotopic if and only if they are isotopic.

Reflecting L through a plane in R3 gives the mirror image m(L) of L . Reversing

orientations of all the components of ~L gives −~L .

19



20 2. KNOTS AND LINKS IN S3

Remark 2.1.2. Another way to define equivalence of links is to say that ~L1 and ~L2

are equivalent if there is an orientation-preserving diffeomorphism f : S3 → S3 so

that f(~L1) = ~L2 . In fact, this gives the same equivalence relation since the group
of orientation-preserving diffeomorphisms of S3 is connected [22].

Remark 2.1.3. It is not hard to see that the smoothness condition in the above
definition can be replaced by requiring the maps to be PL (piecewise linear). For
basic notions of PL topology, see [202]. The PL condition provides an equivalent
theory of knots and links, cf. [18]. (Assuming only continuity would allow wild
knots, which we want to avoid.)

The complements of equivalent links are homeomorphic; therefore the fundamental
group of the complement, also called the link group (or the knot group for a knot),
is an invariant of the link type. The first homology group of an ℓ -component link
L = (L1, . . . , Lℓ) is given by

(2.1) H1(S
3 \ L;Z) ∼= Zℓ.

An isomorphism φ : H1(S
3 \ L;Z) → Zℓ is specified by an orientation and a la-

beling of the components of L : φ sends the homology class of the positively
oriented meridian µi ∈ H1(S

3 \ L;Z) of the ith component Li to the vector
(0, . . . , 0, 1, 0, . . . , 0) ∈ Zℓ (where 1 occurs at the ith position). For the orien-
tation convention on the meridian, see Figure 2.1. Suppose that L is a link in

L2L1

µ1 µ2

Figure 2.1. Meridians of the components of a link. The

oriented link ~L of the diagram has two components ~L1, ~L2 , with
oriented meridians µ1 and µ2 .

R3 and prP : R3 → P is the orthogonal projection to an oriented plane P ⊂ R3 .
For a generic choice of P the projection prP restricted to L is an immersion with
finitely many double points. At the double points, we illustrate the strand passing
under as an interrupted curve segment. If L is oriented, the orientation is specified
by placing an arrow on the diagram tangent to each component of L . The result-

ing diagram D is called a knot or link diagram of ~L . Obviously, a link diagram
determines a link type.

The local modifications of a link diagram indicated in Figure 2.2 are the Reidemeis-
ter moves ; there are three types of these moves, denoted R1 , R2 and R3 . When
thinking of oriented link diagrams, the strands in the local picture can be oriented
in any way. The figures indicate changes to the diagram within a small disk; the rest
of the diagram is left alone. The Reidemeister moves obviously preserve the link
type. The importance of the Reidemeister moves is underscored by the following
theorem. (For a proof of this fundamental result, see Section B.1.)
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R3

R2R1R1

Figure 2.2. The Reidemeister moves R1, R2, R3 .

Theorem 2.1.4 (Reidemeister, [197]). The link diagrams D1 and D2 correspond
to equivalent links if and only if these diagrams can be transformed into each other
by a finite sequence of Reidemeister moves and planar isotopies.

The following examples will appear throughout the text.

Examples 2.1.5. • Let p, q > 1 be relatively prime integers. The (p, q)
torus knot Tp,q is defined as the set of points

(2.2) {(z1, z2) ∈ C2 | z1z1 + z2z2 = 1, zp1 + zq2 = 0} ⊂ S3.

This knot can be drawn on a standard, unknotted torus in three-space,
so that it meets a longitudinal curve q times (each with local intersection
number +1) and a meridional curve p times (again, each with local inter-
section number +1). A diagram for Tp,q is shown in Figure 2.3. It is easy

........

....

....

....
p strands

q boxes

Figure 2.3. Diagram of the torus link Tp,q . The result is a
knot if gcd(p, q) = 1; in general the torus link has gcd(p, q) com-
ponents.

to see that Tp,q and Tq,p are isotopic knots. The mirror image m(Tp,q)
of Tp,q is called the negative torus knot T−p,q . For general choices of
p and q , the definition of Equation 2.2 produces a link, the torus link
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= = =

m

n
n+m1 −1

Figure 2.4. Convention for twists.

Tp,q , a link with gcd(p, q) components. T2,3 is the right-handed trefoil
knot, and T−2,3 is the left-handed trefoil knot.

• For a1, . . . , an ∈ Z the diagram of Figure 2.5 defines the (a1, . . . , an)
pretzel knot (or pretzel link) P (a1, . . . an) on n strands. Informally,

....a1 a2 an

Figure 2.5. Diagram of the pretzel link P (a1, . . . , an) . A
box with an integer ai means ai right half-twists for ai ≥ 0 and
−ai left half-twists for ai < 0, cf. Figure 2.4.

the pretzel link is constructed by taking 2n strands s1, s2, . . . , s2n−1, s2n ,
introducing |ai| half-twists (right half-twists when ai ≥ 0 and left half-
twists when ai < 0) on the two strands s2i−1, s2i and then closing up the
strands as shown in Figure 2.5. (The conventions on the half-twists are
indicated in Figure 2.4.)

• For n ∈ Z we define the twist knot Wn by Figure 2.6. Notice that we
fix the clasp, and allow the twist in the box to have arbitrary sign and
parity. Informally, a twist knot is constructed by considering two strands,
adding |n| half-twists (right if n ≥ 0 and left if n < 0) to them and then
closing up with the clasp shown by Figure 2.6.

• A diagram of the Kinoshita-Terasaka knot KT is shown in the left
of Figure 2.7; the knot diagram on the right of Figure 2.7 represents the
Conway knot C . These two knots are mutants of each other, that is,
if we cut out the dashed disk from the left diagram of Figure 2.7 and glue
it back after a 180◦ rotation, we get the Conway knot.

Remark 2.1.6. If we equip the torus knot Tp,q with its two possible orientations,
we get isotopic knots. Similarly, the twist knots Wn are isotopic when equipped
with the two possible orientations. When p and q are not relatively prime, we

define the oriented link ~Tp,q by orienting all the parallel strands in Figure 2.3 in
the same direction.
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n

Figure 2.6. Diagram of the twist knot Wn . Clearly, W−1

and W0 are both unknots, W−2 is the right-handed trefoil knot
T2,3 , and W1 is the left-handed trefoil knot m(T2,3) = T−2,3 . The
knot W2 is also called the figure-eight knot.

Figure 2.7. The Kinoshita-Terasaka knot KT (on the left)
and its Conway mutant, the Conway knot C (on the
right). The two knots are mutants of each other, as the dashed
circle on the Kinoshita-Terasaka knot shows.

Exercise 2.1.7. (a) The above families are not disjoint. Find knots that appear
in more than one family.
(b) Using the Seifert-Van Kampen theorem [83, Theorem 1.20] show that for
(p, q) = 1, the knot group of the torus knot Tp,q is isomorphic to 〈x, y | xp = yq〉 .
(c) Compute the link group of T3,6 .
(d) Verify the claim of Remark 2.1.6 for the right-handed trefoil and for the figure-
eight knots.
(e) Show that the figure-eight knot W2 and its mirror m(W2) are isotopic.

The oriented link ~T2,2 is also called the positive Hopf link H+ . Reversing the orien-

tation on one component of ~T2,2 , we get the negative Hopf link H− ; see Figure 2.8.
A simple three-component link is the Borromean rings; see Figure 2.9.

An interesting property of knots and links is related to the existence of a fibration
on their complement.

Definition 2.1.8. A link ~L is fibered if the complement S3 \ ~L admits a fibration

ϕ : S3 \ ~L → S1 over the circle with the property that for each t ∈ S1 the closure

ϕ−1(t) of the fiber ϕ−1(t) is equal to ϕ−1(t)∪ ~L and is a compact, oriented surface

with oriented boundary ~L . (For more on fibered knots, see [18, Chapter 5].)
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H+ H−

Figure 2.8. The two Hopf links H+ and H− .

Figure 2.9. The Whitehead link (on the left) and the Bor-
romean rings (on the right).

#

R

Figure 2.10. The connected sum operation. The band R is
shown by the shaded rectangle.

Exercise 2.1.9. Verify that the torus knot Tp,q is fibered. (Hint: Refer to Exam-
ple 2.1.5 and consider the map f/|f | for f(z1, z2) = zp1 + zq2 .)

A well-studied and interesting class of knots are defined as follows.

Definition 2.1.10. A link diagram D is called alternating if the crossings alter-
nate between over-crossings and under-crossings, as we traverse each component of
the link. A link admitting an alternating diagram is called an alternating link .

Examples 2.1.11. The twist knots Wn are alternating for all n . More generally,
consider the pretzel links P (a1, . . . , an) where the signs of the ai are all the same;
these pretzel links are also alternating. The Borromean rings is an alternating link.

Suppose that ~K1, ~K2 are two oriented knots in S3 that are separated by an em-

bedded sphere. Form the connected sum ~K1# ~K2 of ~K1 and ~K2 as follows. First
choose an oriented rectangular disk R with boundary ∂R composed of four ori-

ented arcs {e1, e2, e3, e4} such that ~K1 ∩R = −e1 ⊂ ~K1 and ~K2 ∩R = −e3 ⊂ ~K2 ,
and the separating sphere intersects R in a single arc and intersects e2 and e4 in

a single point each. Then define ~K1# ~K2 as

~K1# ~K2 = ( ~K1 \ e1) ∪ e2 ∪ e4 ∪ ( ~K2 \ e3).

The resulting knot type is independent of the chosen band R . For a pictorial
presentation of the connected sum of two knots, see Figure 2.10.
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The connected sum operation for knots is reminiscent to the product of integers:
every knot decomposes (in an essentially unique way) as the connected sum of
basic knots (called prime knots). For more on prime decompositions see [119,
Theorem 2.12]. As it turns out, fiberedness of the connected sum is determined by
the same property of the components: by a result of Gabai [64], the connected sum
of two knots is fibered if and only if the two knots are both fibered.

We define now a numerical obstruction to pulling arbitrarily far apart two disjoint,

oriented knots ~K1 and ~K2 .

Definition 2.1.12. Suppose that ~K1, ~K2 ⊂ S3 are two disjoint, oriented knots. Let

D be a diagram for the oriented link ~K1 ∪ ~K2 . The linking number ℓk( ~K1, ~K2)

of ~K1 with ~K2 is half the sum of the signs of those crossings (in the sense of

Figure 2.11) where one strand comes from ~K1 and the other from ~K2 .

+ _

Figure 2.11. Signs of crossings. The crossing shown on the
left is positive, while the one on the right is negative.

Proposition 2.1.13. The linking number ℓk( ~K1, ~K2) has the following properties:

• it is independent of the diagram used in its definition;

• if ~K1 and ~K2 can be separated by a two-sphere, then ℓk( ~K1, ~K2) = 0 ;
• it is integral valued;

• it is symmetric; i.e. ℓk( ~K1, ~K2) = ℓk( ~K2, ~K1) .

Proof. The fact that ℓk( ~K1, ~K2) is independent of the diagram is a straightfor-

ward verification using the Reidemeister moves. It follows immediately that if ~K1

and ~K2 can be separated by a two-sphere, then ℓk( ~K1, ~K2) = 0.

Let ~K ′
1 be obtained from ~K1 by changing a single crossing with ~K2 (with respect

to some fixed diagram D ). It is straightforward to see that ℓk( ~K ′
1,
~K2) differs from

ℓk( ~K1, ~K2) by ±1. Continue to change crossings of ~K1 with ~K2 to obtain a new

link ~K ′′
1 ∪ ~K2 (and a diagram of ~K ′′

1 ∪ ~K2 ) with the property that at any crossings

between ~K ′′
1 and ~K2 , the strand in ~K ′′

1 is above the strand in ~K2 . It follows that

the difference between ℓk( ~K ′′
1 ,
~K2) and ℓk( ~K1, ~K2) is an integer. Since ~K ′′

1 can

be lifted above ~K2 , and then separated from it by a two-sphere, ℓk( ~K ′′
1 ,
~K2) = 0.

We conclude that ℓk( ~K1, ~K2) is integral valued. Finally, the definition of linking

number is manifestly symmetric in the roles of ~K1 and ~K2 .

The linking number has a straightforward generalization to pairs ~L1 and ~L2 of
oriented links. Clearly, the linking number is not the only obstruction to pulling

apart the link ~L1 ∪ ~L2 . For instance, the two components of the Whitehead link
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of Figure 2.9 have zero linking number, but cannot be separated by a sphere (cf.
Exercise 2.4.12(f)). Similarly, for any two components of the Borromean rings the
linking number is zero; but no component can be separated from the other two.

Definition 2.1.14. Let D be a diagram of the link ~L . The writhe wr(D) of
the diagram D is defined to be the number of positive crossings in D minus the
number of negative ones. Notice that if D is the diagram of a knot, then the chosen
orientation does not influence the value of the writhe wr(D) .

Exercise 2.1.15. (a) Consider the homology element [ ~K2] ∈ H1(S
3 \ ~K1;Z) ∼= Z

given by ~K2 ⊂ S3 \ ~K1 . If µ1 is the homology class of an oriented normal circle of
~K1 , then show that [ ~K2] = ℓk( ~K1, ~K2) · µ1 .
(b) Show that the Reidemeister moves R2 and R3 do not change the writhe of a
projection. Determine the change of the writhe under the two versions of R1 .

(c) Suppose that D is the diagram of the link ~L = ~L1∪~L2 . Reverse the orientation

on all components of ~L2 (while keeping the orientations of the components of ~L1

fixed). Let D′ denote the resulting diagram. Show that

wr(D) = wr(D′) + 4ℓk(~L1, ~L2).

2.2. Seifert surfaces

Knots and links can be studied via the surfaces they bound. More formally:

Definition 2.2.1. A smoothly embedded, compact, connected, oriented surface-

with-boundary in R3 is a Seifert surface of the oriented link ~L if ∂Σ = L , and

the orientation induced on ∂Σ agrees with the orientation specified by ~L .

Recall that a connected, compact, orientable surface Σ is classified (up to diffeomor-
phism) by its number of boundary components b(Σ), and an additional numerical
invariant g , called the genus; see [137, Theorem 11.1]. This quantity can be most
conveniently described through the Euler characteristic χ(Σ) of the surface, since

χ(Σ) = 2− 2g(Σ)− b(Σ).

From a given Seifert surface Σ of ~L further Seifert surfaces can be obtained by
stabilizing (or tubing) Σ: connect two distinct points p, q ∈ IntΣ by an arc γ in
S3 \ Σ that approaches Σ at p and q from the same side of Σ. Deleting small
disk neighborhoods of p and q from Σ and adding an annulus around γ , we get
a new surface, which (by our assumption on γ approaching Σ) inherits a natural
orientation from Σ, and has genus g(Σ) + 1, cf. Figure 2.12. According to the
following result, any two Seifert surfaces of a given link can be transformed into
each other by this operation (and isotopy). For a proof of the following result, see
[9] or Section B.3.

Theorem 2.2.2 (Reidemeister-Singer, [213]). Any two Seifert surfaces Σ1 and Σ2

of a fixed oriented link ~L can be stabilized sufficiently many times to obtain Seifert
surfaces Σ′

1 and Σ′
2 that are ambient isotopic.

Exercise 2.2.3. (a) Show that any knot or link in S3 admits a Seifert surface.
(Hint: Using the orientation, resolve all crossings in a diagram to get a disjoint



2.2. SEIFERT SURFACES 27

p

γ

q

y

x

Figure 2.12. Schematic picture of a stabilization of a
Seifert surface. The arc γ in the complement of the surface
is assumed to approach Σ from the same side at p and q , so the
result of the stabilization admits a natural orientation. Although
the diagram shows an unknotted arc, γ is allowed to be knotted.

union of oriented circles in the plane, and consider disks bounded by the result-
ing unknots. Move these disks appropriately to different heights and restore the
crossings by adding bands to the disks. Connectedness can be achieved by tubing
together various components. For further details, see Section B.3 or [119, Chap-
ter 8].)
(b) Find a Seifert surface with genus equal to one for Wn .
(c) Find a Seifert surface with genus equal to one for the 3-stranded pretzel knot
P (a1, a2, a3) with ai odd for i = 1, 2, 3.
(d) Find a Seifert surface of genus n for the (2, 2n+ 1) torus knot T2,2n+1 .

Definition 2.2.4. The genus (or Seifert genus) g(~L) of a link ~L is the minimal

genus of any Seifert surface for ~L .

Exercise 2.2.5. Show that the unique knot with g(K) = 0 is the unknot O .

Remark 2.2.6. The linking number from Definition 2.1.12 has the following al-

ternative definition using Seifert surfaces: ℓk( ~K1, ~K2) is the algebraic intersection

number of a Seifert surface for ~K1 with the oriented knot ~K2 ; see [199, Chapter 5].

Unlike the case of knots, the Seifert genus of a link in general depends on the
orientations of the various components of L .

Example 2.2.7. Let ~L1 denote the torus link ~T2,4 , and let ~L2 be the same link

with the orientation reversed on one component. It is easy to see that ~L2 bounds

an annulus, hence g(~L2) = 0, while g(~L1) = 1.

It is proved in [119, Theorem 2.4] that the Seifert genus is additive under connected
sum of oriented knots.
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2.3. Signature and the unknotting number

A Seifert surface Σ for an oriented link ~L determines a bilinear form on H1(Σ;Z)
as follows. Consider two elements x, y ∈ H1(Σ;Z) and represent them by oriented,
embedded one-manifolds. More precisely, x can be represented by a collection γx
of pairwise disjoint, oriented, simple closed curves, and y can be represented by
a similar γy . (Note that γx and γy might have non-empty intersection, though.)
Let γ+y denote the push-off of γy in the positive normal direction of Σ.

Definition 2.3.1. The Seifert form S for the Seifert surface Σ of the link ~L is
defined for x, y ∈ H1(Σ;Z) by

S(x, y) = ℓk(γx, γ
+
y ).

It is easy to see that the resulting form is independent of the chosen representatives
of the homology classes, and it is a bilinear form on H1(Σ;Z) . By choosing a basis
{a1, . . . , an} of H1(Σ;Z) (represented by embedded circles α1, . . . , αn ), the form
is represented by a Seifert matrix (Si,j) = (ℓk(αi, α

+
j )) .

The Seifert form gives rise to various invariants of knots and links. In the following
we will concentrate on the signature and the Alexander polynomial (in Section 2.4).
The reason for this choice is that these two invariants have analogues in grid homol-
ogy: the τ -invariant (to be defined in Chapter 6 and further explored in Chapters 7
and 8) shares a number of formal properties with the signature, while the Poincaré
polynomial of grid homology can be regarded as a generalization of the Alexander
polynomial.

Before proceeding with these definitions, we recall some simple facts from linear
algebra. The signature of a symmetric, bilinear form Q on a finite dimensional real
vector space V is defined as follows. Let V + resp. V − be any maximal positive
resp. negative definite subspace of V . The dimensions of V + and V − are invariants
of Q , and the signature σ(V ) of V is given by σ(V ) = dim(V +) − dim(V −) .
We define the signature of a symmetric n × n matrix M as the signature of the
corresponding symmetric bilinear form QM on Rn .

Exercise 2.3.2. (a) Let V be a vector space equipped with a symmetric, bilinear
form Q . Let W ⊂ V be a codimension one subspace. Show that

|σ(Q|W )− σ(Q)| ≤ 1.

(b) Suppose that Q on V is specified by a symmetric matrix M . Let Q′ be
represented by a matrix M ′ which differs from M by adding 1 to one of the
diagonal entries. Show that σ(Q) ≤ σ(Q′) ≤ σ(Q) + 2.

Definition 2.3.3. Suppose that Σ is a Seifert surface for the oriented link ~L and

S is a Seifert matrix of Σ. The signature σ(~L) of ~L is defined as the signature

of the symmetrized Seifert matrix S + ST . The determinant det(~L) of the link
~L is | det(S + ST )| . The unnormalized determinant Det(~L) of ~L is defined as
in · det(S + ST ) = det(iS + iST ) , where S + ST is an n× n matrix. Note that if
~L has an odd number of components (hence n is even) then Det(~L) ∈ Z .

We wish to show that σ(~L) , det(~L) , and Det(~L) are independent of the chosen

Seifert matrix of ~L . A key step is the following:
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Lemma 2.3.4. If Σ is a Seifert surface for ~L and Σ′ is a stabilization of Σ , then
there is a basis for H1(Σ

′;Z) whose Seifert matrix has the form



S ξ 0
0 0 1
0 0 0


 or




S 0 0
ξT 0 0
0 1 0




where S is a Seifert matrix for Σ and ξ is some vector.

Proof. Suppose that {a1, . . . , an} is a basis for H1(Σ;Z) , giving the Seifert
matrix S . Adding the two new homology classes y and x of the stabilized surface
Σ′ (as shown by Figure 2.12), we add two columns and two rows to the Seifert
matrix. Clearly, ℓk(ai, x

+) = ℓk(x, a+i ) = 0 for all i = 1, . . . , n , and ℓk(x, x+) = 0.
Furthermore, according to which side the stabilizing curve γ approaches Σ, either
ℓk(x, y+) = 0 and ℓk(x+, y) = 1 or ℓk(x, y+) = 1 and ℓk(x+, y) = 0 (after
replacing y by −y , if needed). Now, changing the basis by adding multiples of x
if necessary to the ai ’s and y , we get a Seifert matrix of the desired form.

Theorem 2.3.5. The quantities σ(~L) , det(~L) and Det(~L) are independent of the

chosen Seifert matrix of ~L giving invariants of the link ~L .

Proof. This follows immediately from Theorem 2.2.2 and Lemma 2.3.4.

The signature, the determinant, and the unnormalized determinant are constrained
by the following identity:

Proposition 2.3.6. For an oriented link ~L ,

Det(~L) = iσ(
~L) det(~L).

Proof. If A is a symmetric matrix over R , then it is elementary to verify
that det(iA) = isgn(A)| det(A)| , where sgn(A) denotes the signature of A . This is
obvious if A is singular. If A is a non-singular n× n matrix, and n+ and n− are
the dimensions of the maximal positive definite resp. negative definite subspaces
of A , then n = n+ + n− and

det(iA) = in−2n− | det(A)| = in+−n− | det(A)| = isgn(A)| det(A)|.

Applying this to the symmetric matrix S+ST , where S is a Seifert matrix for the
link, we get the desired statement.

Exercise 2.3.7. (a) Show that for a knot we have det(S−ST ) = 1, and for a link
with more than one component det(S − ST ) = 0 holds.
(b) Show that the signature of a knot is an even integer, and for the unknot O we
have σ(O) = 0. Compute det(O) using a genus one Seifert surface.
(c) Prove that σ(m(K)) = −σ(K) and σ(−K) = σ(K) .
(d) Show that for n ≥ 0, the signature of T2,2n+1 is −2n .
(e) Compute the signature of the three-stranded pretzel knots P (a1, a2, a3) with
a1 , a2 , and a3 odd.
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Figure 2.13. A strand passes through another one in un-
knotting a knot.

K+ K−

Figure 2.14. Changing the knot at a crossing.

(f) Show that the signature is additive under connected sum, that is, σ(K1#K2) =
σ(K1) + σ(K2) .
(g) Suppose that L is a split link, that is, L can be written as L = L1∪L2 with Li
non-empty in such a way that there is an embedded sphere S2 ⊂ S3 \L separating
L1 and L2 . Show that det(L) = 0.
(h) Compute σ(T3,4) and σ(T3,7) . (Cf. Exercise 2.7.9.)

Imagine modifying a knot in the following manner: allow the knot to move around
in three-space, so that at one moment, two different strands are allowed to pass
through one another transversely. These two knots are said to be related by a
crossing change. Alternatively, take a suitable diagram of the initial knot, and
modify it at exactly one crossing, as indicated in Figure 2.13. Any knot can be
turned into the unknot after a finite sequence of such crossing changes. The minimal
number of crossing changes required to unknot K is called the unknotting number
or Gordian number u(K) of the knot. Clearly, u(K) = u(m(K)) .

Exercise 2.3.8. (a) Suppose that the diagram D of a knot K has the following
property: there is a point p on D such that starting from p and traversing through
the knot, when we reach a crossing for the first time, we traverse on the overcrossing
strand. Show that in this case K is the unknot.
(b) Verify that for any diagram of a knot K half of the number of crossings provides
an upper bound for u(K) .
(c) Suppose that D is a diagram of the knot K with c(D) crossings, and it contains
an arc α with c(α) overcrossings and no undercrossings. Improving the result of
(b) above, show that u(K) ≤ 1

2 (c(D)− c(α)) . Using the diagram of Example 2.1.5,

show that u(Tp,q) ≤
1
2 (p− 1)(q − 1).

Computing the unknotting number of a knot is a difficult task. There is no general
algorithm to determine u(K) , since u(K) is difficult to bound from below effec-
tively. The signature provides a lower bound for u(K) , as we shall see below. (See
Chapter 6 for an analogous bound using grid homology.)

Proposition 2.3.9. ( [156, Theorem 6.4.7]) Let K+ and K− be two knots before
and after a crossing change, as shown in Figure 2.14. Then, the signatures of K+

and K− are related by the following:

−2 ≤ σ(K+)− σ(K−) ≤ 0.
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Proof. Consider the oriented resolution K0 of K+ at its distinguished crossing.
This is a two-component oriented link, where the crossing is locally removed, in a
manner consistent with the orientation on K+ (compare Figure 2.15). Fix a Seifert
surface Σ0 for K0 . Adding a band B to Σ0 gives a Seifert surface Σ+ for K+ ,
while adding B after introducing an appropriate twist, we get a Seifert surface
Σ− for K− . Fix a basis for H1(Σ0;Z) and extend it to a basis for H1(Σ±;Z)
by adding the homology element γ± , obtained as the union of some fixed path
in Σ0 and an arc which passes through the band B . The two resulting Seifert
matrixes differ only at the diagonal entry corresponding to γ± , which is the linking
number ℓk(γ±, (γ±)

+) . When we change the band from the Seifert surface of K+

to the Seifert surface of K− this linking number increases by one. When relating
the symmetrized Seifert matrices of the two surfaces, this fact implies that the
signature of the symmetrized Seifert matrix either does not change or it increases
by two (cf. Exercise 2.3.2(b)), proving the lemma.

Corollary 2.3.10. For a knot K ⊂ S3 we have the inequality 1
2 |σ(K)| ≤ u(K) .

Proof. This follows immediately from Proposition 2.3.9 and the fact that the
unknot O has vanishing signature.

Exercise 2.3.11. Prove that for n ≥ 0 the unknotting number of T2,2n+1 is n .

Remark 2.3.12. By Proposition 2.3.6, the parity of half the signature is determined
by the sign of Det(L) . Knowing this parity alone leads to the following method
for determining the signature of an arbitrary knot K . Start from an unknotting
sequence for K , and look at it in reverse order; i.e. starting at the unknot, which
has vanishing signature. Observe that at each step in the sequence, 1

2σ can change
by zero or ±1. The parity of half the signature determines whether or not the
change is non-zero, and in that case, Proposition 2.3.9 shows that the change in
signature is determined by the type of the crossing change.

Note that, Proposition 2.3.9 gives a bound on u(K) which is slightly stronger than
the one stated in Corollary 2.3.10: if the signature of the knot K is positive, then
in any unknotting sequence for K at least 1

2σ(K) moves must change a negative
crossing to a positive one. Sometimes this stronger bound is referred to as a signed
unknotting bound.

2.4. The Alexander polynomial

Beyond the signature and the determinant, further knot and link invariants can be

derived from the Seifert matrix. Suppose that ~L ⊂ S3 is a given link in S3 with
a Seifert surface Σ and a corresponding Seifert matrix S . Consider the matrix
t−

1
2S − t

1
2ST and define the (symmetrized) Alexander polynomial ∆~L(t) by

(2.3) ∆~L(t) = det(t−
1
2S − t

1
2ST ).

Although the Seifert matrix S in the formula depends on certain choices, the above

determinant (as the notation suggests) is an invariant of ~L :
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Theorem 2.4.1. The Laurent polynomial ∆~L(t) ∈ Z[t
1
2 , t−

1
2 ] is independent from

the chosen Seifert surface and Seifert matrix of ~L and hence is an invariant of the

oriented link ~L .

Proof. The independence of ∆~L(t) from the chosen basis of H1(Σ;Z) is a simple

exercise in linear algebra. Indeed, a base change replaces S with PSPT for a
matrix with detP = ±1, hence the Alexander polynomial is the same for the two
bases. The theorem now follows from Theorem 2.2.2 and Lemma 2.3.4.

Example 2.4.2. The Alexander polynomial of the torus knot Tp,q is equal to

(2.4) ∆Tp,q
(t) = tk

(tpq − 1)(t− 1)

(tp − 1)(tq − 1)

with k = − (p−1)(q−1)
2 , cf. Exercise 2.4.15.

It follows immediately from the definitions that

Det(~L) = ∆~L(−1),

where the value of ∆~L at −1 is to be interpreted as substituting −i for t
1
2 .

Lemma 2.4.3. For a knot K the Alexander polynomial ∆K(t) is a symmetric
Laurent polynomial, that is,

(2.5) ∆K(t−1) = ∆K(t).

Proof. Let Σ be a genus g Seifert surface for K . Since H1(Σ;Z) ∼= Z2g , S is

a 2g × 2g matrix, hence we have ∆K(t−1) = (−1)2g det(t−
1
2ST − t

1
2S) = ∆K(t),

concluding the proof.

More generally, if ~L is an oriented link, then ∆~L(t
−1) = (−1)|L|−1∆~L(t) , where

|L| denotes the number of components of L .

Exercise 2.4.4. (a) Show that for a knot K the Alexander polynomial is in
Z[t, t−1] . Verify the same for any link with an odd number of components.
(b) Show that for a knot K the Alexander polynomials of K , −K , and m(K) are
all equal.
(c) Show that the Alexander polynomial of the twist knot Wk is given by the
formulas

∆W2n
(t) = −nt+ (2n+ 1)− nt−1

∆W2n−1
(t) = nt− (2n− 1) + nt−1.

(d) Compute the Alexander polynomial of the (2, 2n+ 1) torus knot T2,2n+1 .
(e) Let P denote the 3-stranded pretzel knot P (2b1 + 1, 2b2 + 1, 2b3 + 1) with
integers bi (i = 1, 2, 3). Compute the Seifert form corresponding to a Seifert
surface of genus equal to one. Show that the Alexander polynomial of P is

∆P (t) = Bt+ (1− 2B) +Bt−1,

where B = b1b2 + b1b3 + b2b3 + b1 + b2 + b3 + 1.
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Note that there are infinitely many pretzel knots with Alexander polynomial ∆K(t) ≡
1; the smallest non-trivial one is the pretzel knot P (−3, 5, 7).

The following exercise demonstrates that the Alexander polynomial depends on the
orientation of a link:

Exercise 2.4.5. Consider the (2, 2n) torus link T2,2n for n ≥ 1. Orient the two
strands so that the linking number of the two components is n , and compute the
Alexander polynomial. Now reverse the orientation on one of the components, and
compute the Alexander polynomial of this new oriented link.

Some important properties of the Alexander polynomial ∆K(t) for knots are col-
lected in the next result. Since the Alexander polynomial ∆K(t) of the knot
K ⊂ S3 is symmetric in t , we can write it as

(2.6) ∆K(t) = a0 +

n∑

i=1

ai(t
i + t−i).

We define the degree d(K) of ∆K(t) as the maximal d for which ad 6= 0.

Theorem 2.4.6 ([119, 199]). Suppose that the knot K ⊂ S3 has Alexander poly-
nomial ∆K(t) of degree d(K) . Then

(1) For the Seifert genus g(K) of K we have g(K) ≥ d(K) .
(2) For any two knots K1 and K2 , ∆K1#K2

(t) = ∆K1
(t) ·∆K2

(t) .
(3) For any knot K , ∆K(1) = 1 .

Proof. For the first claim, choose a Seifert surface for K with genus g(K) ,
and use its associated Seifert form to compute the Alexander polynomial. The
inequality g(K) ≥ d(K) follows at once.

The second property is clear by choosing Seifert surfaces Σ1 and Σ2 for K1 and
K2 and taking their boundary connected sum.

Given any two curves γ1 and γ2 in Σ, ℓk(γ+1 , γ2) − ℓk(γ+2 , γ1) is the algebraic
intersection number of γ1 and γ2 . To prove the third property, choose a basis
{αi, βj}

g
i,j=1 for H1(Σ) so that #(αi ∩ βi) = 1 and all other pairs of curves are

disjoint. If S is the Seifert matrix with respect to this basis, then the matrix ST−S

decomposes as blocks of

(
0 1
−1 0

)
; and since this matrix has determinant 1, the

claim follows at once.

An argument using a Z -fold covering of S3\K shows that the Alexander polynomial
provides an obstruction for a knot being fibered.

Theorem 2.4.7. ( [199, page 326]) If K is fibered, then g(K) = d(K) and ad(K) =
±1 .

Example 2.4.8. The computation of the Alexander polynomials for twist knots
(given in Exercise 2.4.4(c)) together with the above result shows that W2n and
W2n−1 are not fibered once |n| > 1.

An important computational tool for the symmetrized Alexander polynomial ∆~L
is provided by the skein relation.
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D+ D− D0

Figure 2.15. Diagrams for the skein relation. Three dia-
grams differ only inside the indicated disk.

Definition 2.4.9. Three oriented links (~L+, ~L−, ~L0) are said to form an oriented
skein triple if they can be specified by diagrams D+ , D− , D0 that are identical
outside of a small disk, in which they are as illustrated in Figure 2.15. In this case,
D0 is called the oriented resolution of D+ (or D− ) at the distinguished crossing.

Theorem 2.4.10. Let (~L+, ~L−, ~L0) be an oriented skein triple. Then,

(2.7) ∆~L+
(t)−∆~L−

(t) = (t
1
2 − t−

1
2 )∆~L0

(t).

Proof. Fix a Seifert surface Σ0 for ~L0 as in the proof of Proposition 2.3.9, and

consider the Seifert surfaces Σ+ and Σ− for ~L+ and ~L− obtained from Σ0 by
adding the appropriate bands around the crossing. Let S0 denote the Seifert form
corresponding to a chosen basis of H1(Σ0;Z) . As in the proof of Proposition 2.3.9,
such a basis can be extended to bases of H1(Σ±;Z) by adding one further basis
element γ± that passes through the band.

When computing the determinants defining the terms in the skein relation (2.7),
on the left-hand-side all terms cancel except the ones involving the diagonal entries
given by ℓk(γ±, (γ±)

+) in the Seifert form. In the computation of the determinant,

this entry gives rise to a factor (t
1
2 −t−

1
2 ) , which is multiplied with the determinant

of the corresponding minor. Since that minor is t−
1
2S0− t

1
2ST0 , whose determinant

is ∆~L0
(t) , the statement of the theorem follows at once.

Example 2.4.11. Using the skein relation, it follows immediately that the Alexan-
der polynomial of the Hopf link H± is equal to ±(t

1
2 − t−

1
2 ) . A slightly longer

computation shows that the Alexander polynomial ∆B(t) of the Borromean rings

B is equal to (t
1
2 − t−

1
2 )4 .

Exercise 2.4.12. (a) Show that for a split link ~L we have ∆~L(t) ≡ 0.
(b) Show that the skein relation, together with the normalization ∆O(t) = 1 on
the unknot O , determines the Alexander polynomial for all oriented links.
(c) Using the skein relation, determine the Alexander polynomial of Wn for all n .
Determine the Seifert genus of Wn .
(d) Verify that the Kinoshita-Terasaka and the Conway knots both have Alexander
polynomial equal to 1.
(e) Given a knot K , consider the 2-component link L we get by adding a meridian
to K . Depending on the orientation of the meridian we get L(+) and L(−) (in
the first case the linking number of the two components is 1, while in the second
case it is −1). Show that ∆L(±)(t) = ±(t

1
2 − t−

1
2 )∆K .

(f) Determine the Alexander polynomial of the Whitehead link of Figure 2.9.
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The Alexander polynomial is an effective tool for studying alternating knots. (Com-
pare the results below with Theorems 2.4.6 and 2.4.7.)

Theorem 2.4.13 ([156, 153]). Suppose that K is an alternating knot with Alexan-

der polynomial ∆K(t) = a0 +
∑d
i=1 ai(t

i + t−i) and with degree d(K) .

• The genus g(K) of the knot K is equal to d(K) . In particular, if the
Alexander polynomial of K is trivial, then K is the unknot.

• For i = 0, . . . , d(K)−1 the product aiai+1 is negative, that is, none of the
coefficients (of index between 0 and d(K)) of the Alexander polynomial
of K vanish, and these coefficients alternate in sign.

• The knot K is fibered if and only if ad(K) = ±1 .

Exercise 2.4.14. Identify the torus knots that are alternating.

2.4.1. The Alexander polynomial via Fox calculus. There is an algebraic
way to compute the Alexander polynomial of a link through Fox’s free differential
calculus. For this construction, fix a presentation of the fundamental group of the
link complement

π1(S
3 \ L) = 〈g1, . . . , gn | r1, . . . , rm〉.

(By possibly adding trivial relations, we can always assume that m ≥ n− 1.) We
associate to the presentation its n × m Jacobi matrix J = (Ji,j) over Z[t, t−1] ,
which is defined as follows. The presentation gives a surjective homomorphism
of groups Fn → π1(S

3 \ L) , where Fn denotes the free group generated by the
letters g1, . . . , gn . Consider the induced map Z[Fn] → Z[π1(S

3 \ L)] on the group
algebras. Composing this map with the abelianization, we get a map Z[Fn] →
Z[H1(S

3 \ L;Z)] . Recall that the orientation of the link L provides a further map
H1(S

3 \L;Z) → Z , sending the oriented meridians of the components to 1. Hence,
after identifying the group algebra Z[Z] with Z[t, t−1] , we get a map

(2.8) φ : Z[Fn] → Z[t, t−1].

For a word w ∈ Fn define the free derivative

∂w

∂gj
∈ Z[Fn]

by the rules

∂uv

∂x
=
∂u

∂x
+ u

∂v

∂x
,

∂gi
∂gi

= 1,
∂gi
∂gj

= 0 (i 6= j).

Exercise 2.4.15. (a) Show that for n ∈ N ∂xn

∂x = xn−1
x−1 and ∂x−n

∂x = −x−1 x−n−1
x−1−1 .

(b) Suppose that for p, q ∈ N relatively prime integers the group G is presented

as 〈x, y | xpy−q〉 . Determine ∂(xpy−q)
∂x and ∂(xpy−q)

∂y .

Applying the map φ of Equation (2.8) on the free derivative ∂ri
∂gj

we get a poly-

nomial Ji,j , the (i, j)-term of the Jacobi matrix J of the presentation. Consider
the ideal ǫ1 generated by the determinants of the (n− 1)× (n− 1)-minors of the
Jacobian J . For the proof of the following theorem, see [119, Chapters 6 and 11].

Theorem 2.4.16. The ideal ǫ1 is a principal ideal, and its generator P (t) is ±t
k
2

times the Alexander polynomial ∆~L(t) , for some k ∈ Z .
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+ _

Figure 2.16. By introducing a clasp we construct the
Whitehead double of K . Notice that there are two different
ways for introducing the clasp, providing a further parameter ±
besides the chosen framing.

Exercise 2.4.17. (a) Using Fox calculus, verify Equation (2.4), and compute the
Alexander polynomial of the (p, q) torus knot. (Hint: Recall Exercise 2.1.7(b) and
apply Exercise 2.4.15(b)).
(b) Using the Alexander polynomial (and the result of Theorem 2.4.6), show that
the Seifert genus of the torus knot Tp,q is given by g(Tp,q) =

1
2 (p− 1)(q − 1).

(c) Find a presentation of π1(S
3 \ B) for the Borromean rings B , and compute

±∆B(t) with the aid of Fox calculus.

2.5. Further constructions of knots and links

The normal bundle ν(K) → K of a knot K ⊂ S3 is an oriented D2 -bundle over
S1 , hence it is trivial. A trivialization of this bundle is called a framing of K .
Thought of as a complex line bundle, the normal bundle can be trivialized by a
single (nowhere zero) section, hence by a push-off K ′ of K . The linking number
ℓk(K,K ′) of the knot K with the push-off K ′ determines the framing up to isotopy.
With this identification, the push-off along a Seifert surface, providing the Seifert
framing, corresponds to 0.

Exercise 2.5.1. Suppose that the knot K is given by the diagram D . The diagram
provides a framing by pushing off the arcs of D within the plane. Show that the
resulting framing corresponds to the writhe wr(D) ∈ Z .

Knots with interesting properties can be constructed as follows. For a given knot
K consider the push-off K ′ of K corresponding to the framing k ∈ Z , and orient
K ′ opposite to K . Then the resulting two-component link Lk(K) bounds an
annulus between K and K ′ , and it is easy to see from the definition that for the
given framing k , the link will have Alexander polynomial equal to ∆Lk(K)(t) =

k(t−
1
2 − t

1
2 ) . (The annulus provides a Seifert surface with corresponding 1 × 1

Seifert matrix (k) .) In particular, for k = 0 the resulting link L0(K) has vanishing
Alexander polynomial.

Modify now the link Lk(K) constructed above by replacing the two close parallel
segments near a chosen point p with a clasp as shown in Figure 2.16. The resulting
knot is called a Whitehead double of K . Notice that since the clasp can be positive
or negative, for each framing k we actually have two doubles, W+

k (K) and W−
k (K) ;
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(c)(b)(a)

2k

Figure 2.17. Adding a band. Start from the two-component
unlink of (a) and add the band B (an example shown in (b)) to
get the knot K(B) . Adding k full twists to B we get the family
K(B,K) of knots, shown by (c).

the k -framed positive resp. negative Whitehead double of K . Observe that the k -
twisted Whitehead double of the unknot is a twist knot; more precisely, W+

k (O) =

W2k and W−
k (O) =W2k−1 .

Lemma 2.5.2. The 0-framed Whitehead doubles W±
0 (K) for any knot K have

Alexander polynomial ∆W±

0
(K)(t) = 1 .

Proof. Use the skein relation at a crossing of the clasp, and note that the
oriented resolution has vanishing Alexander polynomial, as shown above, while the
knot obtained by a crossing change is the unknot.

Exercise 2.5.3. Compute Det(W±
0 (K)) and show that σ(W±

0 (K)) = 0.

Another class of examples is provided by the two-component unlink, equipped with
an embedded band B added to the unlink which turns it into a knot K(B) , cf.
Figure 2.17. In this construction B can be any band whose interior is disjoint from
the unlink, and whose ends are contained in different components of the unlink. A
band B gives rise to further bands by adding twists to it: by adding k full twists
to B , we get K(B, k) .

Lemma 2.5.4. The Alexander polynomial of K(B, k) is independent of k :

∆K(B,k)(t) = ∆K(B)(t).

Proof. Applying the skein relation to a crossing coming from the twist on the
band B , the three links in the skein triple are K(B, k) , K(B, k − 1) and the
two-component unlink. Since the two-component unlink has vanishing Alexander
polynomial, induction on k verifes the statement of the lemma.

Remark 2.5.5. Using other knot invariants, it is not hard to see that K(B, k) for
various k can be distinct. For example, if K(B) has non-trivial Jones polynomial
(cf. [119]), then the Jones polynomials distinguish the K(B, k) for various values
of k .

For a variation on this theme, consider the Kanenobu knots K(p, q) shown in
Figure 2.18. These knots are constructed from the two-component unlink by a
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2q

2p

Figure 2.18. The Kanenobu knot K(p, q) . The boxes repre-
sent 2p and 2q half twists; that is p and q full twists.

similar procedure as our previous examples K(B, k) in two different ways: we
could regard the region with the p full twists as a band added to the two-component
unlink (cf. Figure 2.19(a)), or we can do the same with the region of the q full
twists, as shown in Figure 2.19(b). It follows that all of them have the same
Alexander polynomial.

2q

2p

(a) (b)

Figure 2.19. Two ribbon representations of K(p, q) .

If we allow both parameters to change so that p+ q stays fixed, then not only the
Alexander polynomials, but also the HOMFLY (and hence the Jones) polynomials
and Khovanov (and Khovanov-Rozansky) homologies of the resulting knots stay
equal. For these latter computations see [225], cf. also [85].

Remark 2.5.6. The definition of the Alexander polynomial through Fox calculus
provides further invariants by considering the kth elementary ideals ǫk generated
by the determinants of the (n − k) × (n − k) minors of a Jacobi matrix J for
k > 1. Indeed, the Kanenobu knots (of Figure 2.18) can be distinguished by the
Jones polynomial together with the second elementary ideal ǫ2 : for K(p, q) it is
generated by the two polynomials t2 − 3t+ 1 and p− q , hence for fixed p+ q this
ideal determines p and q . For this computation and further related results see [99].

Exercise 2.5.7. Determine ∆K(p,q)(t) . (Hint: Pick p = q = 0 and identify K(0, 0)
with the connected sum of two copies of the figure-eight knot.)
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Figure 2.20. Ribbon singularity.

The construction of the knots K(B) naturally generalizes by considering the n -
component unlink and adding (n − 1) disjoint bands to it in such a way that the
result is connected. A knot presented in this way is called a ribbon knot.

Exercise 2.5.8. Show that K ⊂ S3 is ribbon if and only if it bounds an immersed
disk in S3 , where the double points of the immersion, that is, the self-intersections
of the disk locally look like the picture of Figure 2.20.

2.6. The slice genus

A further basic knot invariant is the (smooth) slice genus (or four-ball genus) gs(K)
of a knot K , defined as follows. An oriented, smoothly embedded surface (F, ∂F ) ⊂
(D4, ∂D4 = S3) with ∂F = K is called a slice surface of K .

Definition 2.6.1. The integer

gs(K) = min{g(F ) | (F, ∂F ) ⊂ (D4, S3) is a slice surface for K}

is the slice genus (or four-ball genus) of the knot K . A knot K is a slice knot
if gs(K) = 0, that is, if it admits a slice disk.

The invariant gs provides a connection between knot theory and 4-dimensional
topology; see also Section 8.6. The slice genus is related to the Seifert genus and
the unknotting number by the inequalities:

(2.9) gs(K) ≤ g(K), gs(K) ≤ u(K).

The first is immediate: just push the interior of a Seifert surface into the interior
of D4 . For the second, note that a d -step unknotting of K (followed by capping
off the unknot at the end) can be viewed as an immersed disk in D4 with d double
points. Resolving the double points gives a smoothly embedded genus d surface
which meets ∂D4 = S3 at K . In more detail, this resolution is done by removing
two small disks at each double point of the immersed disk, and replacing them
with an embedded annulus. Clearly, for each double point, this operation drops
the Euler characteristic by two and hence increases the genus by one. One can find
knots K for which the differences g(K)− gs(K) and u(K)− gs(K) are arbitrarily
large. (See for instance Exercise 2.6.2(b) and Example 8.7.1.)

Exercise 2.6.2. (a) Show that a ribbon knot is slice. In particular, verify that the
knots K(B, k) from Lemma 2.5.4 are slice.
(b) Show that for any knot K , K#m(−K) is a slice knot. Show that K#m(−K)
is, indeed, ribbon.
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Remark 2.6.3. There is no known example of a slice knot which is not ribbon.
Indeed, the slice-ribbon conjecture of Fox [57] asserts that any slice knot is
ribbon. The conjecture has been verified for 2-bridge knots [124] and for certain
Montesinos knots [116], but it is open in general.

A further property, the Fox-Milnor condition, of the Alexander polynomial can be
used to show that certain knots are not slice.

Theorem 2.6.4 (Fox-Milnor, [56, 58]). If K is a slice knot, then there is a poly-
nomial f with the property that ∆K(t) = f(t) · f(t−1) .

Exercise 2.6.5. Compute the slice genus of the figure-eight knot W2 (cf. Fig-
ure 2.6) and of the right-handed trefoil knot T2,3 .

Like the unknotting number u(K) , the slice genus gs(K) is poorly understood; in
fact it is unknown even for some small-crossing knots. However, there are some
classical lower bounds on the slice genus; we review here one coming from the
signature (generalizing Corollary 2.3.10):

Theorem 2.6.6. For a knot K ⊂ S3 , 1
2 |σ(K)| ≤ gs(K) .

We return to a proof of Theorem 2.6.6 after some further discussion.

The bound in Theorem 2.6.6 is typically not sharp. For example, as we will see,
the slice genus of the (p, q) torus knot Tp,q is 1

2 (p− 1)(q − 1), while the signature
can be significantly smaller. (For a recursive formula for σ(Tp,q) see [156].) For
example, 1

2σ(T3,7) = −4 (cf. Exercise 2.3.7(h)), while gs(T3,7) = u(T3,7) = 6.

Similarly, in Chapter 8 (see Remark 8.6.5) we will show that gs(W
−
0 (T−2,3)) = 1,

while (according to Exercise 2.5.3) it has vanishing signature.

The conclusion of Theorem 2.6.4 holds even when the hypothesis that K is slice is
replaced by the following weaker condition:

Definition 2.6.7. A knot K is called topologically slice if there is a continuous
embedding φ : (D2 ×D2, (∂D2)×D2) → (D4, ∂D4 = S3) such that φ(∂D2 × {0})
is K .

Note that the “normal” D2 -direction (required by the above definition) automati-
cally exists for smooth embeddings of D2 in D4 . The topologically slice condition
on K is strictly weaker than the (smoothly) slice condition: for example the White-
head double of any knot (with respect to the Seifert framing) is a topologically slice
knot, but in many cases (for example, for the negatively clasped Whitehead double
of the left-handed trefoil knot) it is not smoothly slice. The fact that these knots
are topologically slice follows from a famous result of Freedman [59] (see also [67]),
showing that any knot whose Alexander polynomial ∆K(t) = 1 is topologically
slice. The fact that W−

0 (T−2,3) is not smoothly slice will be demonstrated using
the τ invariant in grid homology, cf. Lemma 8.6.4. In particular, the condition that
∆K = 1 is not sufficient for a knot to admit a smooth slice disk. Recall that both
the Kinoshita-Terasaka knot and the Conway knot have ∆K = 1. The Kinoshita-
Terasaka knot is smoothly slice, while the (smooth) slice genus of the Conway knot
is unknown. Note that the distinction between smooth and topological does not
appear for the Seifert genus, cf. [2].
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Figure 2.21. A saddle move. Adding a band to ~L (on the left)

we get the link ~L′ (on the right), and the two links are related by
a saddle move.

Exercise 2.6.8. Find a slice disk for the Kinoshita-Terasaka knot.

The rest of this section is devoted to the proof of Theorem 2.6.6. During the
course of the proof, we give some preparatory material which will also be used in
Chapter 8, where we present an analogous bound coming from grid homology.

We prefer to recast Theorem 2.6.6 in terms of knot cobordisms, defined as follows.

Given two oriented links ~L0, ~L1 ⊂ S3 , a cobordism between them is a smoothly
embedded, compact, oriented surface-with-boundary W ⊂ S3 × [0, 1] such that

W ∩ (S3×{i}) is ~Li for i = 0, 1, and the orientation of W induces the orientation

of ~L1 and the negative of the orientation of ~L0 on the two ends.

We will prove the following variant of Theorem 2.6.6. (The proof we describe here
is similar to the one given by Murasugi [154].)

Theorem 2.6.9. Suppose that W is a smooth genus g cobordism between the knots
K1 and K2 . Then

|σ(K1)− σ(K2)| ≤ 2g.

Before we provide the details of the proof, we need a definition.

Definition 2.6.10. Given two oriented links ~L and ~L′ , we say that ~L and ~L′ are
related by a saddle move if there is a smoothly embedded, oriented rectangle R

with oriented edges e1, . . . , e4 , whose interior is disjoint from ~L , with the property

that ~L ∩ R = (−e1) ∪ (−e3) , and ~L′ is obtained by removing e1 and e3 from ~L
and attaching e2 and e4 with the given orientations (and smoothing the corners).

This relation is clearly symmetric in ~L and ~L′ , see Figure 2.21. (Notice that the
connected sum of two knots is a special case of this operation.) If we have k

disjoint rectangles between ~L and ~L′ as above, we say that ~L and ~L′ are related
by k simultaneous saddle moves.

In the course of the verification of the inequality of Theorem 2.6.9, we use the
following standard result. (See also Section B.5.) For the statement, we introduce
the following notational convention: given a knot K and an integer n , let Un(K)
denote the link obtained by adding n unknotted, unlinked components to K .

Proposition 2.6.11 (cf. Section B.5). Suppose that two knots K1 and K2 can be
connected by a smooth, oriented, genus g cobordism W . Then, there are knots K ′

1

and K ′
2 and integers b and d with the following properties:
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α

Figure 2.22. Resolution of a ribbon singularity. By pulling
apart the bands slightly, we get a Seifert surface for the knot we
got by attaching the bands to Ud(K) . The curve α is indicated in
the picture on the right.

(1) Ub(K1) can be obtained from K ′
1 by b simultaneous saddle moves.

(2) K ′
1 and K ′

2 can be connected by a sequence of 2g saddle moves.
(3) Ud(K2) can be obtained from K ′

2 by d simultaneous saddle moves.

The proof of this proposition relies on the concept of normal forms of cobordisms
between knots, as explained in Section B.5.

With Proposition 2.6.11 at our disposal, the proof of Theorem 2.6.9 will easily
follow from the two lemmas below:

Lemma 2.6.12. If ~L and ~L′ are oriented links that differ by a saddle move, then

|σ(~L)− σ(~L′)| ≤ 1 .

Proof. A Seifert surface for ~L can be obtained from one for ~L′ by adding a band

to it, cf. the proof of Proposition 2.3.9. Thus, a Seifert matrix for ~L is obtained by

adding one row and one column to a Seifert matrix of ~L′ . This fact immediately
implies that the signature can change by at most one (cf. Exercise 2.3.2(a)).

Lemma 2.6.13. Let K1 and K2 be knots with the property that K2 can be obtained
from Ud(K1) by d simultaneous saddle moves. Then, σ(K1) = σ(K2) .

Proof. Fix a Seifert surface Σ for K1 and the spanning disks for the d unknot
components in Ud(K1) . By making the bands sufficiently thin, we can arrange
that the intersections of the saddle bands with the spanning disks or Σ are ribbon
singularities, as shown in Figure 2.20 (or on the left in Figure 2.22). A Seifert
surface Σ′ for K2 can be constructed by pulling the bands slightly apart at the
ribbon singularities, as shown on the right in Figure 2.22. Each time we apply this
operation, we increase the genus of the surface Σ by one, hence we increase the
number of rows (and columns) of the Seifert matrix by two. One of the two new
homology elements, called αp at the ribbon singularity p , can be visualized on the
picture: it encircles the square we opened up. The linking number of αp with α+

p

vanishes. Furthermore, the linking number of αp with all homology elements on
the Seifert surface Σ, and with the other αq also vanish.

The surfaces Σ and Σ′ give Seifert forms S and S′ . We wish to compare the
signatures of the bilinear forms Q and Q′ represented by S + ST and S′ + (S′)T .
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There is a natural embedding H1(Σ) →֒ H1(Σ
′) , and the restriction of Q′ to H1(Σ)

is Q . Since the determinant of a knot is always non-trivial (cf. Exercise 2.3.7(a)),
it follows that Q and Q′ are both non-degenerate; so there is a perpendicular
splitting (with respect to Q′ )

H1(Σ
′;R) ∼= H1(Σ;R)⊕ V.

The curves αp are linearly independent, since surgery along them gives a connected
surface. Thus, the αp span a half-dimensional subspace of V , moreover Q′ vanishes
on their span. Since Q′ is non-degenerate on V , it follows that the signature of V
vanishes; and hence the signature of Q equals the signature of Q′ .

Proof of Theorem 2.6.9. The theorem is now a direct consequence of Proposi-
tion 2.6.11, Lemma 2.6.12 and Lemma 2.6.13.

It follows that the signature bounds the slice genus:

Proof of Theorem 2.6.6. Removing a small ball around some point on a smooth
slice surface gives a smooth genus g cobordism from K to the unknot. Applying
Theorem 2.6.9 and the fact that the signature of the unknot vanishes, the result
follows at once.

Remark 2.6.14. The above proof of Theorem 2.6.6 rests on the normal form for
cobordisms (Proposition 2.6.11), whose hypothesis is that the surface is smoothly
embedded. With different methods it can be shown that 1

2 |σ(K)| ≤ gtop(K) , for
the topological slice genus gtop(K) , the minimal genus of a locally flat embedded
surface in D4 bounding K [119, Theorem 8.19]. Consequently, the signature
σ(K) vanishes for any topologically slice knot, and therefore it cannot be used to
distinguish topological and smooth sliceness.

2.7. The Goeritz matrix and the signature

We include here a handy formula, due to Gordon and Litherland [78], for computing
the signature of a link in terms of its diagram. (This material will be needed in
Section 10.3, where we compute the grid homology for alternating knots.)

Let D be a diagram of a link. The diagram admits a chessboard coloring: the
components of the complement of the diagram in the plane can be colored black and
white in such a manner that domains with the same color do not share sides. Indeed,
the diagram D admits two such colorings; choose the one where the unbounded
region is white and call this unbounded region d0 . Let the other white regions be
denoted by d1, . . . , dn .

Definition 2.7.1. The black regions can be glued together to form a compact
surface, the black surface Fb ⊂ R3 with the given link as its boundary ∂Fb : at
each crossing glue the domains together with a twisted band to restore the crossing
in the diagram.

Exercise 2.7.2. Consider the alternating diagram of the (2, 2n + 1) torus knot
T2,2n+1 given by Figure 2.3. Show that the surface Fb is homeomorphic to the
Möbius band, so Fb is not a Seifert surface.
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(a) (b)

Figure 2.23. The sign ǫ = ±1 associated to a crossing in
the diagram. If the crossing is positioned as (a) with respect to
the black regions, we associate +1 to it, while if the crossing has
the shape of (b), then we associate −1 to it.

Type I Type II

Figure 2.24. Types of crossings in an oriented diagram.

The chessboard coloring gives rise to a matrix defined as follows. First associate
to each crossing p of the diagram D a sign ǫ(p) ∈ {±1} shown in Figure 2.23.
(Conventions on ǫ are not uniform in the literature; we are using the one from [18].)

Definition 2.7.3. Define the unreduced Goeritz matrix G′ = (gi,j)
n
i,j=0 as

follows. For i 6= j , let

gi,j = −
∑

p

ǫ(p),

where the sum is taken over all crossings p shared by the white domains di and
dj ; for i = j , let

gi,i = −
∑

k 6=i

gi,k.

The reduced Goeritz matrix G = G(D) is obtained from G′ by considering the
n rows and columns corresponding to i, j > 0.

Recall that the link (and hence its projection D ) is equipped with an orientation.
Classify a crossing p of D as type I or type II according to whether at p the positive
quadrant is white or black; see Figure 2.24. The type of a crossing is insensitive
to which of the two strands passes over the other one; but it takes the orientation
of the link into account. Define µ(D) as

∑
ǫ(p) , where the summation is for all

crossings in D of type II. The Goeritz matrix (together with the correction term
µ(D) above) can be used to give an explicit formula for computing the signature

of a link ~L from a diagram D . This formula is often more convenient than the
original definition using the Seifert form of a Seifert surface. (The proof given below
follows [190].)
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Theorem 2.7.4 (Gordon-Litherland formula, [78]). Suppose that D is a diagram

of a link ~L with reduced Goeritz matrix G = G(D) . Let σ(G) denote the signature

of the symmetric matrix G . Then, σ(~L) is equal to σ(G)− µ(D) .

In the course of the proof of this theorem we will need the following definition and
lemma (the proof of which will be given in Appendix B).

Definition 2.7.5. The diagram D of a link ~L is special if it is connected, and

the associated black surface Fb (from Definition 2.7.1) is a Seifert surface for ~L .

Lemma 2.7.6 (see Proposition B.3.3). Any oriented link admits a special dia-
gram.

Using the above result, the proof of Theorem 2.7.4 will be done in two steps. First
we assume that D is a special diagram, and check the validity of the formula for
the signature in this case. In the second step we show that σ(G) − µ(D) is a link
invariant; i.e., it is independent of the chosen projection.

Lemma 2.7.7. Suppose that D is a special diagram of the oriented link ~L . Then
the signature of the reduced Goeritz matrix G(D) is equal to σ(L) , and µ(D) = 0 .

Proof. The contour of any bounded white domain provides a circle, hence a
one-dimensional homology class in Fb . We claim that in this way we construct a
basis for H1(Fb;R) . To show linear independence, for each crossing c consider the
relative first homology class pc in H1(Fb, ∂Fb;R) represented by the arc in Fb that
is the pre-image of the crossing. For a crossing adjacent to the unbounded domain
the corresponding arc is intersected by a single contour, and working our way
towards the inner domains, an inductive argument establishes linear independence.

Let B denote the number of black regions, W the number of white regions, and
C the number of crossings. Thinking of the connected projection as giving a cell
decomposition of S2 , we see that W +B −C = 2. By definition we have χ(Fb) =
B − C . It follows that the first homology of Fb has dimension W − 1; thus the
contours give a basis for H1(Fb;R) .

A local computation shows that the reduced Goeritz matrix is equal to S + ST ,
where S is the Seifert matrix of Fb for the above basis. The definition immediately

provides the identity σ(G(D)) = σ(~L) .

If Fb is a Seifert surface for ~L , the diagram D has no type II crossing, hence for a
special diagram D the correction term µ(D) is equal to zero.

Lemma 2.7.8. Fix an oriented link ~L and consider a diagram D of it. The differ-
ence σ(G)− µ(D) is independent of the chosen diagram D , and is an invariant of
~L .

Proof. By the Reidemeister Theorem 2.1.4, the claim follows once we show that
σ(G)− µ(D) remains unchanged if we perform a Reidemeister move.

The first Reidemeister move creates one new domain, which in the chessboard
coloring is either black or white. If it is black, the new crossing is of type I and
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the Goeritz matrix remains unchanged, hence the quantity σ(G) − µ(D) remains
unchanged, as well. If the new domain is white, then the new crossing p is of type
II, hence µ changes by ǫ(p) . The Goeritz matrix also changes, as follows. Let dnew
denote the new white domain, and dnext the domain sharing a crossing with dnew .
The new Goeritz matrix, written in the basis provided by the domains with the
exception of taking dnext + dnew instead of dnext , is the direct sum of the Goeritz
matrix we had before the move, and the 1×1 matrix (ǫ(p)) . The invariance follows
again.

For the second Reidemeister move, we have two cases again, depending on whether
the bigon enclosed by the two arcs is black or white in the chessboard coloring. If
it is black, then the matrix G does not change, and the two new intersections have
the same type, with opposite ǫ -values, hence µ does not change either. If the new
domain is white, then µ does not change under the move by the same reasoning as
before. Now, however, the matrix changes, but (as a simple computation shows)
its signature remains the same, verifying the independence.

The invariance under the Reidemeister move R3 needs a somewhat longer case-
analysis, corresponding to the various orientations of the three strands involved.
Interpret the move as pushing a strand over a crossing p , and suppose that a black
region disappears and a new white region is created. Inspecting each case, one sees
that µ changes to µ− ǫ(p) , while G aquires a new row and column, and after an
appropriate change of basis this row and column contains only zeros except one
term -ǫ(p) in the diagonal; hence the invariance follows as before.

After these preparations we are ready to provide the proof of the Gordon-Litherland
formula:

Proof of Theorem 2.7.4. Consider the given diagram D and a special diagram

D′ for the fixed oriented link ~L . By Lemma 2.7.8

σ(G(D))− µ(D) = σ(G(D′))− µ(D′),

while for the special diagram D′ (by Lemma 2.7.7) we have σ(G(D′)) = σ(~L) and
µ(D′) = 0, verifying the identity of the theorem.

Exercise 2.7.9. Compute the signature σ(T3,3n+1) as a function of n .

If Σ is a Seifert surface for ~L , then −Σ is a Seifert surface for −~L . Thus, if S

is the Seifert matrix for ~L , then ST is the Seifert matrix for −~L . The signature,
determinant and the Alexander polynomial of an oriented link therefore remains
unchanged if we reverse the orientations of all its components.

If we reverse the orientation of only some components of a link, however, the sit-
uation is different. As Exercise 2.4.5(b) shows, the Alexander polynomial changes
in general. As it will be explained in Chapter 10, the determinant of the link will
stay unchanged under such reversal of orientations.

The signature of a link depends on the orientation of the link, and it changes in
a predictable way if we reverse the orientations of some of its components. Later
we will need the exact description of this change, which was first established by
Murasugi [155]. Here we follow the elegant derivation of [78], using the Gordon-
Litherland formula of Theorem 2.7.4.
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Corollary 2.7.10. Let ~L1 and ~L2 be two disjoint, oriented links. Then,

σ(~L1 ∪ ~L2) = σ((−~L1) ∪ ~L2)− 2ℓk(~L1, ~L2).

Proof. Let ~L = ~L1 ∪ ~L2 . Fix a diagram D for the oriented link ~L1 ∪ ~L2 , and let

D′ be the induced diagram for (−~L1) ∪ ~L2 , obtained by changing the orientations
on L1 . Since reversing the orientation on some of the components of D leaves the
Goeritz matrix unchanged, the Gordon-Litherland formula gives

σ(~L1 ∪ ~L2)− σ((−~L1) ∪ ~L2) = µ(D′)− µ(D).

The identification
µ(D′)− µ(D) = −2ℓk(~L1, ~L2)

is now a straightforward matter: at those crossings where both strands belong either

to ~L1 or to ~L2 the same quantity appears in µ(D′) and in µ(D) . At crossings of

strands from ~L1 and ~L2 the orientation reversal changes the type, but leaves the
quantity ǫ(p) unchanged. Summing up these contributions (as required in the sum

given by µ(D′)−µ(D)) we get −2ℓk(~L1, ~L2) (cf. Definition 2.1.12), concluding the
proof.

The Gordon-Litherland formula has an interesting consequence for alternating links.
To describe this corollary, we introduce the following notion. The compatible color-
ing for an alternating link arranges for each crossing to have the coloring shown in
Figure 2.23(b). It is easy to see that a connected alternating diagram always has a
unique compatible coloring.

Suppose now that D is a connected alternating diagram of a link L . Let Neg(D)
(and similarly, Pos(D)) denote the number of negative (resp. positive) crossings
in D , and let White(D) (and Black(D)) denote the number of white (resp. black)
regions, for the compatible coloring.

Corollary 2.7.11. Let ~L be a link which admits a connected, alternating diagram
D . Equip D with a compatible coloring. Then,

(2.10) σ(~L) = Neg(D)−White(D) + 1 and σ(~L) = Black(D)− Pos(D)− 1.

Proof. Thinking of the knot projection as giving a cell decomposition of S2 , it
follows that

White(D) + Black(D) = Pos(D) + Neg(D) + 2;

so it suffices to prove only one of the two formulas in Equation (2.10).

Suppose first that for the compatible coloring of D we have that the unbounded
domain is white. From our coloring conventions on the alternating projection it
is clear that ǫ(p) = −1 for all crossings, and furthermore positive crossings are of
type I and negative crossings are of type II. Therefore, µ(D) = −Neg(D) .

Next we claim that the Goeritz matrix of a compatibly colored, connected, alter-
nating link diagram is negative definite. We see this as follows. By the alternating
property it follows that ǫ(p) = −1 for all crossings. Let m denote the number of
crossings in the diagram. Consider the negative definite lattice Zm , equipped with a
basis {ep}

m
p=1 so that 〈ep, eq〉 = −δpq (with δpq being the Kronecker delta). Think
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of the basis vectors ep as being in one-to-one correspondence with the crossings
in the projection. Consider next the vector space whose basis vectors correspond
to the bounded white regions {di}

n
i=1 in the diagram. At each crossing, label one

of the white quadrants with +1 and the other with −1. For i = 1, . . . , n and
p = 1, . . . ,m , let ci,p be zero if the pth crossing does not appear on the boundary
of di or if it appears twice on the boundary of di ; otherwise, let ci,p be ±1, de-
pending on the sign of the quadrant at the pth crossing in di . Consider the linear
map sending di to

∑
p ci,p · ep . Since D is connected, this map is injective. (This

follows from the inductive argument used in the proof of Lemma 2.7.7.) It is now
straightforward to check that this linear map realizes an embedding of the lattice
specified by the Goeritz matrix G(D) into the standard, negative definite lattice.
It follows at once that the Goeritz matrix is negative definite, as claimed.

The above argument shows that σ(G(D)) is equal to −(White(D)− 1), and so the
Gordon-Litherland formula immediately implies the corollary.

Assume now that the compatible coloring on D provides a black unbounded do-
main. Reverse all crossings of D to get the mirror diagram m(D) , which represents

the mirror link m(~L) . Since the reversal also reverses the colors of the domains
in the compatible coloring, the unbounded domain of the compatible coloring on
m(D) is white. For this diagram the previous argument then shows

σ(m(~L)) = Neg(m(D))−White(m(D)) + 1.

Since Neg(m(D)) = Pos(D) , White(m(D)) = Black(D) and σ(m(~L)) = −σ(~L) ,
we get

σ(~L) = Black(D)− Pos(D)− 1.



CHAPTER 3

Grid diagrams

In this chapter we introduce the concept of a grid diagram, giving a convenient
combinatorial way to represent knots and links in S3 . Grid diagrams will play
an essential role in the rest of the book. These diagrams, as a tool for studying
knots and links, made their first appearance in the work of Brunn in the late
19 th century [17]. Other variants have been used since then, for example, in
bridge positions [127], or in arc presentations of Cromwell and Dynnikov [27, 37].
Dynnikov used grid diagrams in his algorithm for recognizing the unknot [37]; see
also [12]. Our presentation rests on Cromwell’s theorem which describes the moves
connecting different grid presentations of a given link type.

In Section 3.1 we introduce planar grid diagrams and their grid moves. Planar grid
diagrams can be naturally transferred to the torus, to obtain toroidal grid diagrams,
used in the definition of grid homology. Toroidal grid diagrams are discussed in
Section 3.2. In Section 3.3 we show how grid diagrams can be used to compute the
Alexander polynomial, while in Section 3.4 we introduce a method which provides
Seifert surfaces for knots and links in grid position. Finally, in Section 3.5 we
describe a presentation of the fundamental group of a link complement that is
naturally associated to a grid diagram.

3.1. Planar grid diagrams

The present section will concern the following object:

Definition 3.1.1. A planar grid diagram G is an n×n grid on the plane; that
is, a square with n rows and n columns of small squares. Furthermore, n of these
small squares are marked with an X and n of them are marked with an O ; and
these markings are distributed subject to the following rules:

(G-1) Each row has a single square marked with an X and a single square
marked with an O .

(G-2) Each column has a single square marked with an X and a single square
marked with an O .

(G-3) No square is marked with both an X and an O .

The number n is called the grid number of G .

We denote the set of squares marked with an X by X and the set of squares marked
with an O by O . Sometimes, we will find it convenient to label the O -markings
{Oi}

n
i=1 . A grid diagram can be described by two permutations σO and σX . If

there is an O -marking in the intersection of the ith column and the jth row, then

49
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Figure 3.1. The knot associated to the pictured grid di-
agram, with orientation and crossing conventions. The
diagram can be described by the two permutations σO and σX ,
specifying the locations of the O ’s and X ’s. Above, the two per-
mutations are σO = (2, 6, 5, 3, 4, 1) and σX = (5, 4, 1, 6, 2, 3).

the permutation σO maps i to j . We will indicate this permutation as an n -
tuple, (σO(1), . . . , σO(n)) . (By convention, we regard the left-most column and the
bottom-most row as first.) The permutation σX is defined analogously, using the
X -markings in place of the O -markings.

In this section, we will use the terms “planar grid diagram” and simply “grid
diagram” interchangeably. Care must be taken once we introduce the notion of a
“toroidal grid diagram”, later in the chapter.

3.1.1. Specifying links via planar grid diagrams. A grid diagram G spec-

ifies an oriented link ~L via the following procedure. Draw oriented segments con-
necting the X -marked squares to the O -marked squares in each column; then draw
oriented segments connecting the O -marked squares to the X -marked squares in
each row, with the convention that the vertical segments always cross above the
horizontal ones. See Figure 3.1 for an example. In this case, we say that G is a

grid diagram for ~L .

Remark 3.1.2. The permutation σX · σ−1
O can be decomposed as a product of ℓ

disjoint cycles for some ℓ . This number is equal to the number of components of
the link specified by the grid diagram.

Lemma 3.1.3. Every oriented link in S3 can be represented by a grid diagram.

Proof. Approximate the link ~L by a PL-embedding with the property that
the projection admits only horizontal and vertical segments. At a crossing for
which the horizontal segment is an over-crossing, apply the modification indicated in
Figure 3.2. Finally, move the link into general position, so that different horizontal
(or vertical) segments are not collinear. Mark the turns by X ’s and O ’s, chosen so
that vertical segments point from X to O , while horizontal segments point from

O to X . The result is a grid diagram representing ~L .

Examples 3.1.4. (a) Given p, q > 1, define a (p+q)×(p+q) grid G(p, q) by σO =
(p+q, p+q−1, . . . , 2, 1) and σX = (p, p−1, . . . , 1, p+q, p+q−1, . . . , p+2, p+1). For
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Figure 3.2. The local modification for correcting crossings.

Figure 3.3. Grid diagrams for the trefoils. The left-handed
trefoil T−2,3 is on the left; the right-handed trefoil T2,3 is on the
right.

Figure 3.4. Grid diagrams for the Conway knot (left) and
the Kinoshita-Terasaka knot (right).

G(2, 3) see the right picture in Figure 3.3. When (p, q) = 1, G(p, q) represents the
torus knot Tp,q , cf. Exercise 3.1.5(a). More generally, G(p, q) represents the torus
link Tp,q . (b) Figure 3.4 provides grid presentations of the Kinoshita-Terasaka and
Conway knots. (c) The diagram of Figure 3.5 is a grid diagram for the Borromean
rings.

Exercise 3.1.5. (a) Show that when (p, q) = 1, G(p, q) represents the (p, q) torus
knot Tp,q .
(b) Find a grid presentation of the twist knot Wn from Example 2.1.5. (Hint : For
the special case n = 3 consult Figure 3.6. Notice that both diagrams present the
same knot, which is 52 in the knot tables.)
(c) Consider the permutations σX = (p + 1, p + 2, . . . , p + q, 1, . . . , p) and σO =
(1, 2, . . . , p+ q) . Show that the resulting (p+ q)× (p+ q) grid diagram represents
T−p,q , the mirror of the torus knot Tp,q .
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Figure 3.5. Grid diagram for the Borromean rings.

Figure 3.6. Two grid diagrams of the 52 knot, isotopic to
the twist knot W3 .

(d) Show that by reversing the roles of X and O , the resulting diagram represents
the same link with the opposite orientation.
(e) Similarly, by reflecting a given grid G across the diagonal, the resulting grid
G′ represents the same link as G , but with the opposite orientation.
(f) Suppose that the grid G represents the knot K . Reflect G through the hori-
zontal symmetry axis of the grid square and show that the resulting grid diagram
G∗ represents m(K) , the mirror image of K .
(g) Find diagrams for the Hopf links H± .

3.1.2. Grid moves. Following Cromwell [27] (compare also Dynnikov [37]),
we define two moves on planar grid diagrams.

Definition 3.1.6. Each column in a grid diagram determines a closed interval of
real numbers that connects the height of its O -marking with the height of its X -
marking. Consider a pair of consecutive columns in a grid diagram G . Suppose that
the two intervals associated to the consecutive columns are either disjoint, or one
is contained in the interior of the other. Interchanging these two columns gives rise
to a new grid diagram G′ . We say that the two grid diagrams G and G′ differ by a
column commutation . A row commutation is defined analogously, using rows
in place of columns. A column or a row commutation is called a commutation
move , cf. Figure 3.7.
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Figure 3.7. The commutation move of two consecutive
columns in a grid diagram. Rotation by 90◦ gives an example
of a row commutation.

The second move on grid diagrams will change the grid number.

Definition 3.1.7. Suppose that G is an n× n grid diagram. A grid diagram G′

is called a stabilization of G if it is an (n+1)× (n+1) grid diagram obtained by
splitting a row and column in G in two, as follows. Choose some marked square
in G , and erase the marking in that square, in the other marked square in its row,
and in the other marked square in its column. Now, split the row and column in
two (i.e. add a new horizontal and a new vertical line). There are four ways to
insert markings in the two new columns and rows in the (n+ 1)× (n+ 1) grid to
obtain a grid diagram; see Figure 3.8 in the case where the initial square in G was
marked with an X . Let G′ be any of these four new grid diagrams. The inverse
of a stabilization is called a destabilization .

We will find it useful to classify the various types of stabilizations in a grid diagram.
To this end, observe that for any stabilization, the original marked square gets
subdivided into four squares, arranged in a 2×2 block. Exactly three of these new
squares will be marked. The type of a stabilization is encoded by a letter X or
an O , according to the marking on the original square chosen for stabilization (or
equivalently, which letter appears twice in the newly-introduced 2× 2 block), and
by the position of the square in the 2 × 2 block which remains empty, which we
indicate by a direction: northwest NW , southwest SW , southeast SE , or northeast
NE . It is easy to see that a stabilization changes the projection either by a planar
isotopy or by a Reidemeister move R1 . For example, in the diagrams of Figure 3.8
the stabilizations X:NW,X:NE,X:SE give isotopies while X:SW corresponds to the
Reidemeister move R1 .

Definition 3.1.8. We call commutations, stabilizations, and destabilizations grid
moves collectively.

Grid diagrams are an effective tool for constructing knot invariants, thanks to the
following theorem of Cromwell [27], see also [37] and Section B.4:

Theorem 3.1.9 (Cromwell [27]). Two planar grid diagrams represent equivalent
links if and only if there is a finite sequence of grid moves that transform one into
the other.
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X:SE

X:NEX:NW

X:SW

Figure 3.8. The stabilization at an X -marking. There are
four different stabilizations which can occur at a given X -marking:
X:NW,X:NE,X:SE, and X:SW . The further four types of stabi-
lizations (i.e. at O -markings) can be derived from these diagrams
by interchanging all X - and O -markings.

Figure 3.9. A switch of two special columns. Rotate both
diagrams by 90◦ to get an example of a switch of two special rows.

3.1.3. Other moves between grid diagrams. Interchanging two consecu-
tive rows or columns can be a commutation move; there are two other possibilities:

Definition 3.1.10. Consider two consecutive columns in a grid diagram. These
columns are called special if the X -marking in one of the columns occurs in the
same row as the O -marking in the other column. If G′ is obtained from G by
interchanging a pair of special columns, then we say that G and G′ are related by
a switch . Similarly, if two consecutive rows have an X - and an O -marking in the
same column, interchanging them is also called a switch. See Figure 3.9.

Clearly, grid diagrams that differ by a switch determine the same link type.

Exercise 3.1.11. Show that a switch can be expressed as a sequence of commuta-
tions, stabilizations, and destabilizations.
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Figure 3.10. A cross-commutation move.

Definition 3.1.12. Fix two consecutive columns (or rows) in a grid diagram G ,
and let G′ be obtained by interchanging those two columns (or rows). Suppose that
the interiors of their corresponding intervals intersect non-trivially, but neither is
contained in the other; then we say that the grid diagrams G and G′ are related
by a cross-commutation .

The proof of the following proposition is straightforward:

Proposition 3.1.13. If G and G′ are two grid diagrams that are related by a

cross-commutation, then their associated oriented links ~L and ~L′ are related by a
crossing change.

Grid diagrams can be used to show that any knot can be untied by a finite sequence
of crossing changes (compare Exercise 2.3.8). Pick an X -marking and move the
row containing the O -marking sharing the column with the chosen X -marking until
these two markings occupy neighbouring squares. These moves are either commuta-
tions, switches (as such, leaving the link type unchanged), or cross-commutations,
causing crossing changes. Then commute the column of the chosen X -marking
until it reaches the O -marking in its row (compare Figure 3.12) and destabilize.
This procedure reduces the grid number of the diagram. Repeatedly applying the
procedure we turn the initial grid diagram into a 2× 2 grid diagram representing
the unknot, while changing the diagram by planar isotopies, Reidemeister moves
and crossing changes only.

3.2. Toroidal grid diagrams

We find it convenient to transfer our planar grid diagrams to the torus T obtained
by identifying the top boundary segment with the bottom one, and the left bound-
ary segment with the right one. In the torus, the horizontal and vertical segments
(which separate the rows and columns of squares) become horizontal and vertical
circles. The torus inherits its orientation from the plane. We call the resulting
object a toroidal grid diagram.

Conversely, a toroidal grid diagram can be cut up to give a planar grid diagram
in n2 different ways. We call these planar realizations of the given toroidal grid
diagram. It is straightforward to see that two different planar realizations of the
same grid diagram represent isotopic links. The relationship between these different
planar realizations can be formalized with the help of the following:
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Figure 3.11. Cyclic permutation. By moving the top row of
the left grid to the bottom, we get the grid on the right. In a
cyclic permutation we can move several consecutive rows from top
to bottom (or from bottom to top), and there is a corresponding
move for columns as well.

Definition 3.2.1. Let G be a planar grid diagram, and let G′ be a new planar
diagram obtained by cyclically permuting the rows or the columns of G . (Notice
that this move has no effect on the induced toroidal grid diagram.) In this case, we
say that G′ is obtained from G by a cyclic permutation . See Figure 3.11 for an
example.

Clearly, two different planar realizations of a toroidal grid diagram can be connected
by a sequence of cyclic permutations.

The toroidal grid diagram inherits a little extra structure from the planar diagram.
Thinking of the coordinate axes on the plane as oriented, there are induced orien-
tations on the horizontal and vertical circles: explicitly, the grid torus is expressed
as a product of two circles T = S1 × S1 , where S1 × {p} is a horizontal circle
and {p} × S1 is a vertical circle; and both the horizontal and vertical circles are
oriented. At each point in the torus, there are four preferred directions, which we
think of as North, South, East, and West. (More formally, “North” refers to the
oriented tangent vector of the circles {p} × S1 ; “South” to the opposite direction;
“East” refers to the positive tangent vector of the circles S1 × {p} ; and “West”
to its opposite.) Correspondingly, each of the squares in the toroidal grid has a
northern edge, an eastern edge, a southern edge, and a western edge.

Commutation and stabilization moves have natural adaptations to the toroidal
case. For example, two toroidal grid diagrams differ by a commutation move if
they have planar realizations which differ by a commutation move. Stabilization
moves on toroidal grids are defined analogously. The classification of the types of
stabilizations carries over to the toroidal case.

The grid chain complex (introduced in the next chapter) is associated to a toroidal
grid diagram for a knot K . The resulting homology, however, depends on only K .
The proof of this statement will hinge on Theorem 3.1.9: we will check that grid
homology is invariant under grid moves. In the course of the proof it will be helpful
to express certain grid moves in terms of others.

Lemma 3.2.2. A stabilization of type O:NE (respectively O:SE , O:NW , or O:SW)
can be realized by a stabilization of type X:SW (respectively X:NW , X:SE , or
X:NE), followed by a sequence of commutation moves on the torus.
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X:SW stabilization

commutation moves

O:NE stabilization

Figure 3.12. A stabilization of type O:NE is equivalent to
an X:SW stabilization and a sequence of commutations.

Proof. Let G be a grid diagram and G1 be the stabilization of G at an O -
marking. Commute the new length one vertical segment repeatedly until it meets
another X –marking, and let G2 denote the resulting grid diagram. A type X
destabilization on G2 gives G back. See Figure 3.12 for an illustration.

Corollary 3.2.3. Any stabilization can be expressed as a stabilization of type
X:SW followed by sequence of switches and commutations.

Proof. First use Lemma 3.2.2 to express stabilizations of type O in terms
of stabilizations of type X (and commutations). Next note that stabilizations
X:SE,X:SW,X:NE,X:NW differ from each other by one or two switches.

In a similar spirit, we have the following lemma, which will be used in Chapter 12:

Lemma 3.2.4. A cyclic permutation is equivalent to a sequence of commutations in
the plane, stabilizations, and destabilizations of types X:NW , X:SE , O:NW , and
O:SE .

Proof. Consider the case of moving a horizontal segment from the top to the
bottom, and suppose moreover that the left end of that segment is marked X1 ,
and the right end is marked O2 . Let O1 (respectively X2 ) be the other marking in
the column containing X1 (respectively O2 ). Apply a stabilization of type X:NW

at X2 , and commute the resulting horizontal segment of length 1 to the bottom of
the diagram. We now have a vertical segment stretching the height of the diagram;
apply commutation moves until it is just to the right of the column containing X1 .
Now the horizontal segment starting at X1 is of length 1, and so can be commuted
down until it is just above O1 , where we can apply a destabilization of type O:SE

to get the desired cyclic permutation. See Figure 3.13 for a picture of the sequence
of moves we just performed. The other cases are handled similarly.
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X:NW

O:SE

commutations

row

destabilization

row

stabilization

commutations

column commutations

Figure 3.13. The steps of the proof of Lemma 3.2.4.

3.3. Grids and the Alexander polynomial

In this section grids will refer to planar grids, unless explicitly stated otherwise. Let
G be an n× n planar grid diagram for a link placed in the [0, n]× [0, n] square on
the plane. (The horizontal segments of the grid now have integral y -coordinates,
while the vertical ones have integral x -coordinates. The O - and X -markings have
half-integer coordinates.) Remember that the grid can be specified by the two
permutations σO and σX describing the locations of the two sets of markings.

Recall the following construction from elementary topology:

Definition 3.3.1. Let γ be a closed, piecewise linear, oriented (not necessarily
embedded and possibly disconnected) curve γ in the plane and a point p ∈ R2−γ .
The winding number wγ(p) of γ around the point p is defined as follows. Draw
a ray ρ from p to ∞ , and let wγ(p) be the algebraic intersection of ρ with γ . The
winding number is independent of the choice of the ray ρ .

With this terminology in place, we associate a matrix to the grid G as follows.

Definition 3.3.2. Fix a grid diagram G representing the link ~L . Form the n× n
matrix whose (i, j)th entry (the element in the ith row and jth column) is obtained
by raising the formal variable t to the power given by (−1)-times the winding
number of the link diagram given by G around the (j − 1, n − i)th lattice point
with 1 ≤ i, j ≤ n . Call this matrix the grid matrix , and denote it by M(G) .

Notice that the left-most column and the bottom-most row of M(G) consist of 1’s
only. To explain our above convention, note that the (1, 1) entry of a matrix is in
the upper left corner, while in our convention for grids the bottom-most row is the
first. As an example for the grid diagram in Figure 3.1 (compare Figure 3.14), the
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grid matrix is 


1 1 t t 1 1
1 t−1 1 t 1 1
1 t−1 t−1 1 t−1 1
1 t−1 t−1 1 1 t
1 1 1 t t t
1 1 1 1 1 1



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Figure 3.14. For the grid diagram illustrated in Figure 3.1, we
shade regions according to the winding number of the knot: diag-
onal hatchings from lower left to upper right indicate regions with
winding number +1, the other hatchings indicate winding number
−1, and no hatchings indicate winding number 0.

Exercise 3.3.3. Consider the 2×2 and 3×3 grids diagrams for the unknot, given
by Figure 3.15. Compute the determinants of the associated matrices.

Consider the function det(M(G)) associated to the diagram. According to Exer-
cise 3.3.3, one immediately realizes that this determinant is not a link invariant: it
does depend on the choice of the grid diagram representing the given link. However,
as we will see, after a suitable normalization of this quantity, we obtain the Alexan-
der polynomial of the link represented by the grid. To describe the normalization,
we consider the following quantity a(G) associated to the grid. For an O and an
X consider the four corners of the square in the grid occupied by the marking and
sum up the winding numbers in these corners. By summing these contributions for
all O ’s and X ’s and dividing the result by 8, we get a number a(G) associated
to the n × n grid. Finally, let ǫ(G) ∈ {±1} be the sign of the permutation that
connects σO and (n, n− 1, ..., 1).

Figure 3.15. Two grids representing the unknot. It is easy
to see that the associated determinants det(M(G)) are different.
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Figure 3.16. The two cases in Lemma 3.3.7. On the left
the y -projections of the O − X intervals are disjoint, while on
the right the projections are nested. The diagrams represent two
consecutive columns of the grid (say the ith and (i + 1)st ), and
therefore the vertical lines correspond to the ith , (i + 1)st and
(i+ 2)nd columns of the grid matrix.

Definition 3.3.4. Suppose that G is an n×n grid. Define the function DG(t) to
be the product

ǫ(G) · det(M(G)) · (t−
1
2 − t

1
2 )1−nta(G).

Exercise 3.3.5. Compute DG(t) for the two grids in Figure 3.15.

The next theorem connects the function DG(t) to the Alexander polynomial.

Theorem 3.3.6. Let G be a grid diagram that represents ~L . Then, the function
DG(t) is a link invariant and it coincides with the symmetrized Alexander polyno-

mial ∆~L(t) of the link ~L (as it is defined in Equation (2.3)).

To prove Theorem 3.3.6, we establish some invariance properties of DG(t) .

Lemma 3.3.7. The function DG(t) is invariant under commutation moves.

Proof. Suppose that the grid G′ is derived from G by commuting the ith and
(i+ 1)

st
columns. Then the matrices M(G) and M(G′) differ in the (i + 1)st

column only.

We distinguish two cases, depending on whether the two intervals we are about to
commute project disjointly to the y -axis, or one projection contains the other one
(the two possibilities are shown by the left and right diagrams of Figure 3.16). In
the first case, subtract the ith column from the (i+1)st in M(G) and the (i+2)nd

from the (i+ 1)st in M(G′) . The resulting matrices will differ only in the sign of
the (i + 1)st column, hence their determinants are opposites of each other. Since
neither the size of the grid nor the quantity a(G) changes, while ǫ(G) = −ǫ(G′) ,
the invariance of DG(t) under such commutation follows at once.

In the second case, we distinguish further subcases, depending on the relative po-
sitions of the O - and X -markings in the two columns. In the right diagram of
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i+2

i+1

i

Figure 3.17. The convention used in the proof of Lemma 3.3.8.

Figure 3.16 we show the case when in both columns the O -marking is over the
X -marking; the further three cases can be given by switching one or both pairs
within their columns. In the following we will give the details of the argument only
for the configuration shown by Figure 3.16; the verifications for the other cases
proceed along similar lines.

As before, we subtract one column from the other one in each matrix. The choice of
the columns in this case is important. In the case shown by Figure 3.16 we subtract
the (i+ 2)nd column from the (i+ 1)st ; in general we subtract the column on the
side of the shorter O -X -interval (that is, on the side where the two markings in the
column are closer to each other). After performing the subtraction in both matrices
M(G) and M(G′) , we realize that the (i+ 1)st columns of the two matrices differ
not only by a sign, but also by a multiple of t . A simple calculation shows that this
difference is compensated by the difference in the terms originating from a(G) and
a(G′) , while the sign difference is absorbed by the change of ǫ . This results that
DG(t) remains unchanged under commuting columns. A similar argument verifies
the result when we commute rows, completing the argument.

Lemma 3.3.8. The function DG(t) is invariant under stabilization moves.

Proof. Consider the case where the stabilization is of type X:SW . In the matrix
of the stabilized diagram, if we subtract the (i+ 2)nd row of Figure 3.17 from the
(i + 1)st row (passing between the two X ’s in the stabilization), then we get a
matrix which has a single non-zero term in this row. The determinant of the minor
corresponding to this single element is, up to sign, the determinant of the matrix we
had before the stabilization. The sign change is compensated by the introduction
of ǫ(G) , while the t -power in front of the determinant of the minor is absorbed by
the change of the quantity a(G) and the change of the size of the diagram, showing
that DG(t) remains unchanged. Other stabilizations work similarly.

Combining the above lemmas with Cromwell’s Theorem 3.1.9, the function DG(t)

is a link invariant. Therefore, if G represents the link type ~L then DG(t) will be
denoted by D~L(t) .

The proof of Theorem 3.3.6 will use the fact that D~L satisfies the skein relation.
We start with a definition adapting the notion of an oriented skein triple to the
grid context.

Definition 3.3.9. Let (~L+, ~L−, ~L0) be an oriented skein triple, as in Defini-
tion 2.4.9. A grid realization of the oriented skein triple consists of four
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G+ G0 G′
0 G−

Figure 3.18. The four grid diagrams which show up in the
skein relation.

grid diagrams G+ , G− , G0 , and G′
0 , representing the links ~L+ , ~L− , ~L0 , and ~L0

respectively. These diagrams are further related as follows: G+ and G− differ by
a cross-commutation, G0 and G′

0 differ by a commutation, and G+ and G0 differ
in the placement of their X -markings. See Figure 3.18 for a picture.

Lemma 3.3.10. Any oriented skein triple has a grid realization.

Proof. Consider the diagrams (D+,D−,D0) given by the skein triple. Approx-
imate the diagrams by horizontal and vertical segments as explained in the proof
of Lemma 3.1.3, with the additional property that in the small disk where the di-
agrams differ, the approximation is as given by G+,G− and G′

0 of Figure 3.18,
while outside of the disk the three approximations are identical. Applying the com-
mutation move on the first two columns of the grid G′

0 we get G0 , concluding the
argument.

Proposition 3.3.11. The invariant D~L(t) satisfies the skein relation, that is, for

an oriented skein triple (~L+, ~L−, ~L0) we have

D~L+
(t)−D~L−

(t) = (t
1
2 − t−

1
2 )D~L0

(t).

Proof. Let (~L+, ~L−, ~L0) be an oriented skein triple, and let (G+,G−,G0,G′
0)

be its grid realization, provided by Lemma 3.3.10. These grid diagrams agree in
the placements of their X - and O -markings in all but two consecutive columns,
which we think of as left-most. In these two columns of G+ we either move the
two X -markings (transforming G+ to G0 ), or the two O -markings (giving G′

0

from G+ ), or both (realizing a cross-commutation, transforming G+ to G− ). In
Figure 3.18 we depict the left-most two columns of these grids.

Now, the four associated grid matrices differ only in their second columns; and in
fact, we have the relation

(3.1) det(M(G+)) + det(M(G−)) = det(M(G0)) + det(M(G′
0)).
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It is straigthforward to verify that

a(G−) = a(G+) = a(G0) +
1

2
= a(G′

0)−
1

2
,

ǫ(G+) = −ǫ(G−) = ǫ(G0) = −ǫ(G′
0).

Combining these with Equation (3.1) gives the skein relation for D~L(t) .

Proof of Theorem 3.3.6. The Alexander polynomial for an oriented link satisfies
the skein relation (Theorem 2.4.10). In fact, it is not hard to see that the Alexander
polynomial is characterized by this relation, and its normalization for the unknot.
Since D~L(t) satisfies this skein relation (Proposition 3.3.11), and DO(t) = 1 (as
can be seen by checking in a 2× 2 grid diagram), the result follows.

The determinant of the grid matrix can be thought of as a weighted count of
permutations, where the weight is obtained as a monomial in t , with exponent given
by a winding number. In Chapter 4, grid homology will be defined as the homology
of a bigraded chain complex whose generators correspond to these permutations,
equipped with two gradings.

3.4. Grid diagrams and Seifert surfaces

It turns out that planar grid diagrams can also be applied to study Seifert surfaces
of knots and links. Suppose that the n × n grid diagram G represents the knot
K ⊂ S3 . Consider the winding matrix W(G) associated to G in the following
way: the (i, j)th entry is the winding number of the projection of K given by the
grid G around the (j − 1, n− i)th lattice point with 1 ≤ i, j ≤ n . In the following
we describe a method which produces a Seifert surface for K based on W(G) .

Let Ri (and similarly Cj ) denote the n × n matrix with 1’s in the ith row (jth

column), and 0 everywhere else. Obviously, by adding sufficiently many Ri ’s or
Cj ’s, or both, any integral matrix can be turned into one which has only non-
negative entries.

Definition 3.4.1. Define the complexity c(A) of a non-negative matrix A to be
the sum of all its entries: c(A) =

∑
i,j ai,j . An integral matrix A ∈ Mn(Z) with

non-negative entries is called minimal if its complexity is minimal among those
non-negative integral matrices which can be given by repeatedly adding/subtracting
Ci ’s and Rj ’s to A .

The following lemma gives a criterion for minimality:

Lemma 3.4.2. The matrix A = (ai,j) ∈Mn(Z) with non-negative entries is minimal
if and only if there is a permutation σ ∈ Sn such that ai,σ(i) = 0 for all i ∈
{1, . . . , n} .

Proof. Suppose that there is a permutation σ with the property that ai,σ(i) = 0
for all i . Consider integers mi and ni for i = 1, . . . , n so that

A′ = A+
∑

i

niRi +
∑

i

miCi
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is a matrix with non-negative entries. Since ai,σ(i) = 0, we conclude that ni +
mσ(i) ≥ 0 for all i = 1, . . . , n . Clearly,

c(A′) = c(A) +

n∑

i=1

n(ni +mσ(i)) ≥ c(A),

so the complexity of A is minimal, as claimed.

For the converse direction, let C denote the set of columns, while R the set of rows
of the given non-negative matrix A . Connect cj ∈ C with ri ∈ R if and only if
the (i, j)th entry ai,j of A is equal to zero. Let G denote the resulting bipartite
graph on 2n vertices. According to Hall’s Theorem [82] (a standard result in graph
theory) either there is a perfect matching in G , providing the desired permutation,
or there is a subset C ⊂ C such that the cardinality of the set R formed by those
elements in R which are connected to C is smaller than |C| . Now if we add
the Rj ’s with j ∈ R to A , the columns corresponding to elements of C become
positive, hence can be subtracted while keeping the matrix non-negative. Since
|C| > |R| , we reduced the complexity of A , hence it was non-minimal.

Returning to the matrix W(G) , add and subtract appropriate Ri ’s and Cj ’s until
it becomes a minimal, non-negative integral matrix. Let us denote the result by
H . (Notice that this matrix is not uniquely associated to W(G) — it depends on
the way we turned our starting matrix into a minimal, non-negative one.)

Lemma 3.4.3. Adjacent entries of H differ by at most one; i.e.

(3.2) |hi,j − hi,j+1| ≤ 1, |hi+1,j − hi,j | ≤ 1,

where i and j are taken modulo n ; e.g. we are viewing the last column as adjacent
to the first one. More generally, for each 2 × 2 block of entries in the matrix H
(viewed on the torus), there is a non-negative integer a so that the block has one of
the following five possible shapes, up to rotation by multiples of 90◦ . In cases where

the center of the 2× 2 block is unmarked, the possibilities are:
a a
a a

,
a a+ 1
a a+ 1

and
a a+ 1

a+ 1 a+ 2
. In cases where the center is marked with an O or an X , the

possibilities are
a a
a a+ 1

and
a a+ 1

a+ 1 a+ 1
.

Proof. Consider a 2 × 2 block in W(G) , with entries
ai,j ai,j+1

ai+1,j ai+1,j+1
. By

thinking about winding numbers, it is clear that ai,j+ai+1,j+1−ai,j+1−ai+1,j = 0
unless the corner point corresponds to an O - or X -marking, in which case ai,j +
ai+1,j+1−ai,j+1−ai+1,j = ±1. Since the expression ai,j+ai+1,j+1−ai,j+1−ai+1,j

is unchanged after the addition of Ci or Rj , we conclude that for each i and j ,

(3.3) |hi,j − hi,j+1 − hi+1,j + hi+1,j+1| ≤ 1;

and for each fixed j there are at most two i for which equality holds. Moreover,
for fixed j , we can find k and ℓ so that hk,j = hℓ,j+1 = 0. Since the entries of H
are all non-negative, it follows that |hi,j−hi,j+1| ≤ 1 for all i . The same reasoning
gives the other bound.



3.4. GRIDS AND SEIFERT SURFACES 65

2

3

1

i,j

Figure 3.19. Squares over the grid. In this picture, hi,j = 3.

(a) (b)

Figure 3.20. Gluing squares to construct the embedding
of FH . Neighbouring stacks of squares are glued together either
from the top (as in (a)) or from the bottom (as in (b)).

Combining the bounds from Equations (3.2) and (3.3), we arrive at the five possi-
bilities for the 2× 2 blocks listed above.

Next we associate a surface FH ⊂ S3 to H . Consider first a disjoint union of
squares ski,j with i, j ∈ {1, . . . , n} and k ∈ {1, . . . hi,j} . Glue the right edge of ski,j

to the left edge of ski,j+1 for k ≤ min(hi,j , hi,j+1) , and the bottom edge of s
hi,j−k
i,j

to the top edge of s
hi+1,j−k
i+1,k for 0 ≤ k ≤ min(hi,j , hi+1,j) − 1. The result FH is

an oriented two-manifold with boundary, equipped with an orientation-preserving
map to the torus. It is connected, since H vanishes somewhere.

We can find an embedding of FH into S3 , as follows. View the grid torus as

standardly embedded in S3 , and view {ski,j}
hi,j

k=1 as a collection of disjoint squares,

stacked above the (i, j)th square in the grid torus, so that sk+1
i,j is above ski,j in the

pile; see Figure 3.19. Instead of the edge identifications described earlier, we glue
the various squares together by attaching strips; see Figure 3.20. The result is an
embedding of the surface FH constructed above into S3 .

Proposition 3.4.4. Suppose that the knot K ⊂ S3 is represented by the grid
diagram G . Assume that the minimal, non-negative matrix H is given by adding
and subtracting Ri ’s and Cj ’s to the matrix W(G) associated to G . Then, the
above embedding of the 2-complex FH is a Seifert surface of K .

Proof. We have seen that FH is a 2-dimensional connected, oriented manifold
embedded in S3 . By analyzing the local behavior from Lemma 3.4.3, it follows
that the boundary of FH is isotopic to K . See Figure 3.21 for an example.
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K

Figure 3.21. A portion of FH . We have illustrated here the
portion of FH over a 2× 2 block, one with multiplicity 2 and the
others with multiplicity 1. The the knot K is drawn thicker.

Exercise 3.4.5. Draw the local picture of the embedding of FH over a 2×2 block
for the five possibilities listed in Lemma 3.4.3, with a = 2.

We will compute the Euler characteristic of FH via a formula for any surface-with-
boundary obtained by gluing squares, in the following sense:

Definition 3.4.6. A nearly flattened surface is a topological space F which is
obtained as a disjoint union of oriented squares, which are identified along certain
pairs of edges via orientation-reversing maps; and only edges of different squares are
identified. The resulting space F is naturally a CW complex, with 0-cells corre-
sponding to the corners in the squares (modulo identifications), 1-cells correspond-
ing to edges of the squares (possibly identified in pairs), and 2-cells corresponding
to squares. A flattened surface is a nearly flattened surface with the property
that every 0-cell which is not contained on the boundary is a corner for exactly
four rectangles.

A flattened surface is homeomorphic to a compact two-manifold with boundary.

Lemma 3.4.7. Let F be a flattened surface. At each corner p ∈ F (i.e. each point
of F coming from some corner of some rectangle), let np denote the number of
squares which meet at p . Let C∂F denote the set of corner points in ∂F . Then,
the Euler characteristic of F is computed as

(3.4) χ(F ) =
∑

p∈C∂F

(
1

2
−
np
4

)
.

Proof. Take a sum over all the squares in F with the following weights: each
square is counted with weight 1, each edge on each square with weight − 1

2 , and each

corner (on each square) is counted with weight 1
4 . Adding up these weights, each

2-cell is counted with weight 1 (which is the contribution of each 2-cell to χ(F )),
each interior edge with total weight −1 (the contribution of the corresponding 1-
cell to χ(F )), and each boundary edge with contribution − 1

2 (which is 1
2 greater

than the contribution to χ(F )), and each corner point with weight
np

4 . Since the
total contribution of each square vanishes, we conclude that

χ(F ) =
∑

p∈C∂F

(
1−

np
4

)
−

1

2
#{e ⊂ ∂F}.
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Since the Euler characteristic of the boundary vanishes, and it is computed by
#{p ∈ C∂F }−#{e ⊂ ∂F} , we can subtract half this Euler characteristic to deduce
the claimed formula.

Definition 3.4.8. Given a square Q in the grid marked with an X or an O , let
θ(Q,H) denote the average of the four hi,j adjoining Q . Given a matrix H , let
θ(H) =

∑
X∈X θ(X,H) +

∑
O∈O θ(O,H) .

Proposition 3.4.9. Fix a grid diagram G for a knot K with grid number n , and
let H be any minimal matrix with non-negative entries associated to W(G) . The
Euler characteristic of FH is given by n− θ(H) ; so the genus of FH is given by

(3.5) g(FH) =
1

2
θ(H)−

n− 1

2
.

Proof. Clearly, FH is a nearly flattened surface. We can check that it is a
flattened surface by analyzing the local picture above each 2 × 2 block in H .
When all four local multiplicities equal to a , the center point lifts to a different 0-
cells, none of which is contained in the boundary, and each of which appears as the
corner of exactly four rectangles. When three of the local multiplicities equal one
another, the center point lifts to a single corner point contained on the boundary
of the surface. When two of the local multiplicites are a and the other two are
a+1, the center point lifts to a different interior 0-cells, and a single 0-cell on the
boundary, which is contained in two edges. Finally, when there are three different
local multiplicities a , a+ 1, and a+ 2, the center point lifts to a interior 0-cells,
and two 0-cells appearing on the boundary, and each is contained in two 1-cells.

Consider Equation (3.4), which, according to Lemma 3.4.7, computes the Euler
characteristic of FH . The boundary points for FH for which np 6= 2 (i.e. for
which the contribution to the right-hand-side of Equation (3.4) does not vanish)
are exactly those 2n points which are marked with an O or an X ; i.e. those
which lie over the center point of the 2× 2 blocks where exactly three of the local
multiplicites are equal to one another. For these points, np is the sum of the local
multiplicities at the four adjacent entries. Lemma 3.4.7 gives the stated result.

By considering various grid presentations of the fixed knot K , and various ways to
turn W(G) into a minimal, non-negative matrix, the above algorithm provides a
large collection of Seifert surfaces.

Corollary 3.4.10. For a fixed grid diagram G the Euler characteristic of FH
is independent of the choice of the minimal, non-negative matrix H (obtained by
adding and subtracting rows to W(G)) used in its construction.

Proof. Observe that θ(M) grows by 2 whenever we add a row or a column to
the matrix M , and also the complexity increases by n . It follows at once from
Lemma 3.4.2 that for two minimal complexity, non-negative matrices H and H ′

derived from W(G) , θ(H) = θ(H ′) . By Proposition 3.4.9 the Euler characteristic
of FH can be computed from θ(H) and the grid number n , implying the claim.
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Figure 3.22. Isotopy of a Seifert surface. A Seifert surface
of the right-handed trefoil knot (shown on the left) is isotoped to
a disk with 1-handles attached to it (in the middle). In the final
figure, further isotopies are applied so that the projection is an
orientation preserving immersion.

The above corollary shows that each grid diagram G representing a knot K deter-
mines an integer g(G) , the associated genus of G , which is the genus of any Seifert
surface of K constructed from G by the above procedure.

Proposition 3.4.11. If K is a knot with Seifert genus g , then there is a grid
diagram G for K whose associated genus is g .

Proof. Any Seifert surface F for K can be thought of as obtained from a disk
by adding handles. After isotopy, we can think of these handles as very thin bands.
After further isotopies, we can assume that the Seifert surface immerses orientation
preservingly onto the plane, see Figure 3.22, for example. Approximate the cores of
the one-handles so that their projections consist of horizontal and vertical segments
only. Performing a further local move as in Figure 3.2, we can arrange that for all
crossings, the vertical segments are overcrossings. Approximate the result to get
a grid diagram G , and a surface F0 , isotopic to the original F , which projects
onto G . The projection of the Seifert surface produces a matrix H0 all of whose
coefficients are 0, 1, and 2; the coefficients of 2 correspond to the intersections of
the projections of the bands. We claim that the genus of the Seifert surface F is
greater than or equal to the genus associated to the grid. Indeed, the genus of F0

is computed by the same formula as in Equation (3.5):

g(F0) =
1

2
θ(H0)−

n− 1

2
.

Lemma 3.4.2 gives a minimal complexity non-negative matrix H with

H +
∑

i

miCi +
∑

j

njRj = H0,

and
∑
imi + ni ≥ 0. Since θ(H) + 2(

∑
mi + ni) = θ(H0) , it follows that θ(H) ≤

θ(H0) , and (by Proposition 3.4.9), g(FH) ≤ g(F0) . Applying this reasoning to a
surface F with minimal genus (among Seifert surfaces for K ), we conclude that
g(FH) = g(F0) .

Exercise 3.4.12. Find a Seifert surface for the trefoil knot T2,3 with the method
above, using the grid diagram of Figure 3.3. Do the same for the figure-eight knot,
using the grid of Figure 3.1.
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Examples 3.4.13. We demonstrate the above construction by two other examples.
Let us first consider the Conway knot (of Figure 2.7), represented by the grid
diagram of Figure 3.4. The winding matrix W(G) is now equal to




0 0 0 0 0 0 −1 −1 −1 −1 −1
0 0 0 −1 −1 −1 −2 −2 −1 −1 −1
0 0 0 −1 −1 −1 −2 −3 −2 −2 −1
0 0 0 −1 0 0 −1 −2 −2 −2 −1
0 0 0 −1 0 0 0 −1 −1 −2 −1
0 0 0 −1 0 0 0 0 0 −1 0
0 0 −1 −2 −1 0 0 0 0 −1 0
0 −1 −2 −2 −1 0 0 0 0 −1 0
0 −1 −2 −2 −2 −1 −1 −1 −1 −1 0
0 −1 −1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0




.

Adding Ci ’s to the columns with multiplicities (0, 1, 2, 2, 2, 1, 2, 3, 2, 2, 1) we get a
non-negative matrix, and then adding C1 and subtracting R6 and R11 we get a
minimal non-negative matrix. Using this matrix the construction provides a Seifert
surface of genus three for the Conway knot.

In a similar manner, we consider the Kinoshita-Terasaka knot of Figure 2.7, and
represent it by the grid diagram we get from the grid of Figure 3.4 after commuting
the first two columns. Then, after taking the winding matrix, and adding Ci ’s
to the columns with multiplicities (0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 1), then adding C1 and
subtracting R8 and R10 we get the non-negative minimal matrix




1 0 0 1 0 0 0 0 1 0 0
1 0 0 1 1 1 0 0 1 0 0
1 0 0 1 1 2 1 1 2 1 0
1 1 1 2 2 3 2 2 2 1 0
1 1 0 1 1 2 1 1 1 1 0
1 1 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 0 0 0 0
1 1 1 1 0 1 1 0 1 1 1
0 0 0 1 0 1 1 0 1 0 0
1 0 0 1 0 1 1 1 2 1 1




.

A simple calculation shows that the corresponding Seifert surface has genus two.

3.5. Grid diagrams and the fundamental group

A planar grid diagram determines a simple presentation of the link group π1(S
3\L)

of the underlying link as follows.

The generators {x1, . . . , xn} correspond to the vertical segments in the grid diagram
(connecting the O - and the X -markings). The relations {r1, . . . , rn−1} correspond
to the horizontal lines separating the rows. The relation rj is the product of the
generators corresponding to those vertical segments which meet the jth horizontal
line, in the order they are encountered, from left to right. See Figure 3.23.
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..

x1 x2 xn

r1

r2

rn−1

Figure 3.23. The presentation of the fundamental group
of the knot complement from a grid diagram.

Lemma 3.5.1. The presentation

(3.6) 〈x1, . . . , xn | r1, . . . , rn−1〉

described above is a presentation of the link group π1(S
3 \ L) of L .

Proof. The result follows from the Seifert-Van Kampen theorem for a suitable de-
composition of the link complement into two open subsets. (See for instance [137].)
To visualize this decomposition, consider the planar grid G and assume that the
link is isotoped into the following position. In the usual coordinates (x, y, z) of R3

(with the understanding that the planar grid lies in the plane {z = 0}) we assume
that the horizontal segments of the grid presenting L are in the plane {z = 0} ,
while the vertical segments are in the plane {z = 1} . Over the markings X and O ,
these segments are joined by segments parallel to the z -axis. The resulting polygon
in R3 is a PL representative of L .

Take X1 = {(x, y, z) ∈ R3 \ L | z > 0} and X2 = {(x, y, z) ∈ R3 \ L | z < 1} ,
decomposing the knot complement into two path-connected open subsets, in such
a way that X1 ∩ X2 is also path-connected. Fix the basepoint x0 on the plane
{z = 1

2} . By choosing convenient generators of the free groups π1(X1, x0) and
π1(X2, x0) , the Seifert-Van Kampen theorem provides the desired presentation of
the link group π1(R

3 \ L, x0) = π1(S
3 \ L, x0) .

Example 3.5.2. Consider the planar grid diagram of Figure 3.3, representing the
right-handed trefoil knot T2,3 . The knot group G has the presentation

〈x1, x2, x3, x4, x5 | x1x3, x1x2x3x4, x1x2x4x5, x2x5〉.

Since x3 = x−1
1 , x5 = x−1

2 , and x4 = x1x
−1
2 x−1

1 , G has the simpler presenta-
tion 〈x1, x2 | x1x2x1 = x2x1x2〉. Taking u = x1x2 and v = x2x1x2 , the above
presentation is equivalent to 〈u, v | u3 = v2〉 .

Exercise 3.5.3. Using the grid diagram of Figure 3.5, find a presentation of the
link group of the Borromean rings.



CHAPTER 4

Grid homology

The aim of the present chapter is to define the chain complexes for computing grid

homology, following [135, 136]. We define three versions: G̃C(G) , ĜC (G) , and
GC−(G) . The first of these is the simplest, and the first two are both specializations
of the last one, which in turn is a specialization of a more complicated algebraic
object GC−(G) that we will meet in Chapter 13. In this chapter, and in fact, all
the way until Chapter 8, we will consider primarily the case of knots.

This chapter is organized as follows. Section 4.1 introduces grid states, the gener-
ators of the grid chain complexes. Differentials count rectangles in the torus, and
in Section 4.2 we describe how rectangles can connect grid states. In Section 4.3,
we define two functions, the Maslov function and the Alexander function on grid
states; these functions will induce the bigradings on the grid complexes. In Sec-

tion 4.4 we define the grid complex G̃C , the variant with the minimal amount of
algebraic structure. In Section 4.5, we give a quick overview of some of the basic
constructions from homological algebra (chain complexes, chain homotopies, quo-
tient complexes) which will be of immediate use. (For more, see Appendix A.)

In Section 4.6, we define further versions of the grid complex GC− and ĜC . In
Section 4.7, we interpret the Alexander function in terms of the winding number,

leading to an expression of the Euler characteristic of G̃H and ĜH in terms of
the Alexander polynomial. Section 4.8 gives some concrete calculations of grid ho-
mology. In Section 4.9, we conclude with some remarks relating the combinatorial
constructions with analogous holomorphic constructions.

4.1. Grid states

Consider a toroidal grid diagram for a knot K with grid number n , as described in
Section 3.1. Think of each square in the grid as bounded by two horizontal and two
vertical arcs. The horizontal arcs can be assembled to form n horizontal circles in
the torus, denoted α = {αi}

n
i=1 , and the vertical ones can be assembled to form

n vertical circles, denoted β = {βi}
n
i=1 .

Definition 4.1.1. A grid state for a grid diagram G with grid number n is a
one-to-one correspondence between the horizontal and vertical circles. More geo-
metrically, a grid state is an n -tuple of points x = {x1, . . . , xn} in the torus, with
the property that each horizontal circle contains exactly one of the elements of x
and each vertical circle contains exactly one of the elements of x . The set of grid
states for G is denoted S(G) .

71
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Figure 4.1. A grid state in S(G) . Labelling the circles from
left to right and bottom to top in this picture, the grid state cor-
responds to the permutation (1, 2, 3, 4, 5, 6) 7→ (6, 4, 2, 5, 1, 3).

A grid state x can be thought of as a graph of a permutation; i.e. if x =
{x1, . . . , xn} , then σ = σx is specified by the property that xi = ασ(i) ∩ βi . The
correspondence between grid states and permutations is, of course, not canonical:
it depends on a numbering of the horizontal and vertical circles.

When illustrating the diagrams and the states, we use planar grids; that is, cut
the toroidal grid along a vertical and a horizontal circle. The square obtained by
cutting up the torus is a fundamental domain for the torus, and the induced planar
grid diagram is the planar realization of the grid diagram. Figure 4.1 provides an
illustration of a typical grid state in a grid diagram for the figure-eight knot. To
emphasize the side identifications used in going from the planar to the toroidal grid,
we repeat components of the grid state on the left and the right edge, and the top
and the bottom edge.

4.2. Rectangles connecting grid states

The chain complexes associated to a grid diagram are generated by grid states, and
their differentials count rectangles connecting states. The various versions of the
grid complex differ in how they count count rectangles. We formalize the concept
of connecting rectangles, as follows.

Fix two grid states x,y ∈ S(G) , and an embedded rectangle r in the torus whose
boundary lies in the union of the horizontal and vertical circles, satisfying the
following relationship. The sets x and y overlap in n− 2 points in the torus, and
the four points left out are the four corners of r . There is a further condition stated
in terms of the orientation r inherits from the torus. The oriented boundary of
r consists of four oriented segments, two of which are vertical and two of which
are horizontal. The rectangle r goes from x to y if the horizontal segments in
∂r point from the components of x to the components of y , while the vertical
segments point from the components of y to the components of x .

More formally, if r is a rectangle, let ∂αr denote the portion of the boundary of
r in the horizontal circles α1 ∪ . . . ∪ αn , and let ∂βr denote the portion of the
boundary of r in the vertical ones. The boundary inherits an orientation from r .
The rectangle r goes from x to y if

∂(∂αr) = y − x and ∂(∂βr) = x− y,
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Figure 4.2. Two grid states and the four rectangles con-
necting them. Black ones appear in only one, call it x ; white
dots appear in only the other one, call it y ; and gray dots appear
in both. The two rectangles on the top row go from x to y , and
other two go from y to x . The top left rectangle is empty, and
the other three are not.

where x − y is thought of as a formal sum of points; e.g. at points in p ∈ x ∩ y ,
the difference cancels.

If there is a rectangle from x to y , then all but two points in x must also be
in y . Thinking of grid states as corresponding to permutations, this is equivalent
to the condition that the permutation ξ associated to x and the permutation η
associated to y are related by the property that ξ · η−1 is a transposition.

For x,y ∈ S(G) , let Rect(x,y) denote the set of rectangles from x to y . The set
Rect(x,y) is either empty, or it consists of exactly two rectangles, in which case
Rect(y,x) also consists of two rectangles. See Figure 4.2 for an illustration.

When we speak of a “rectangle”, we will think of it as the geometric subset of the
torus, together with the initial and the terminal grid states x and y . Thus, if
x 6= x′ , a rectangle from x to y is always thought of as different from a rectangle
from x′ to y′ , even if their underlying polygons in the torus are the same. The
underlying polygon is called the support of the rectangle.

Label the four corners of any rectangle as northeast, southeast, northwest, and
southwest. This can be done, for example, by lifting r to the universal cover, which
inherits a preferred pair of coordinates: the horizontal direction which is oriented
eastward, and the vertical direction, which is oriented northward, following the
conventions of Section 3.2. Sometimes we refer to the northwest corner as the
upper left one, and the southeast corner as the lower right one.
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If r is a rectangle from x to y , then r contains elements of x and y on its
boundary. The northeast and southwest corners of r are elements of x , called
initial corners, and the southeast and northwest corners of r are elements of y ,
called terminal corners. The rectangle r might in addition contain elements of x
in its interior Int(r) . Note that x ∩ Int(r) = y ∩ Int(r) .

The following rectangles will play a special role in our subsequent constructions:

Definition 4.2.1. A rectangle r ∈ Rect(x,y) is called an empty rectangle if

x ∩ Int(r) = y ∩ Int(r) = ∅.

The set of empty rectangles from x to y is denoted Rect◦(x,y) .

4.3. The bigrading on grid states

The grid complexes are equipped with two gradings called the Maslov grading and
the Alexander grading, both induced by integral-valued functions on grid states for
a toroidal grid diagram. The aim of this section is to construct these functions.
Key properties of both functions are stated in the next two propositions, whose
proofs will occupy the rest of the section. We start with the Maslov function.

Proposition 4.3.1. For any toroidal grid diagram G , there is a function

MO : S(G) → Z,

called the Maslov function on grid states, which is uniquely characterized by
the following two properties:

(M-1) Let xNWO be the grid state whose components are the upper left corners
of the squares marked with O . Then,

(4.1) MO(x
NWO) = 0.

(M-2) If x and y are two grid states that can be connected by some rectangle
r ∈ Rect(x,y) , then

(4.2) MO(x)−MO(y) = 1− 2#(r ∩O) + 2#(x ∩ Int(r)).

Note that MO is independent of the placement of the X -markings. There is another
function, MX defined as in Proposition 4.3.1, only using the X -markings in place of
the O -markings. Unless explicitly stated otherwise, the Maslov function on states
refers to MO ; and we will usually drop O from its notation.

Definition 4.3.2. The Alexander function on grid states is defined in terms
of the Maslov functions by the formula

(4.3) A(x) =
1

2
(MO(x)−MX(x))−

(
n− 1

2

)
.

Key properties of the Alexander function are captured in the following:

Proposition 4.3.3. Let G be a toroidal grid diagram for a knot. The function A
is characterized, up to an overall additive constant, by the following property. For
any rectangle r ∈ Rect(x,y) connecting two grid states x and y ,

(4.4) A(x)−A(y) = #(r ∩ X)−#(r ∩O).

Furthermore, A is integral valued.
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We prove Proposition 4.3.1 first. This is done by constructing a candidate function
for MO , and verifying that it has the properties specified in Proposition 4.3.1. The
candidate function is defined in terms of a planar realization of the toroidal grid,
using the following construction.

Definition 4.3.4. Consider the partial ordering on points in the plane R2 specified
by (p1, p2) < (q1, q2) if p1 < q1 and p2 < q2 . If P and Q are sets of finitely many
points in the plane, let I(P,Q) denote the number of pairs p ∈ P and q ∈ Q with
p < q . We symmetrize this function, defining

J (P,Q) =
I(P,Q) + I(Q,P )

2
.

Consider a fundamental domain [0, n) × [0, n) for the torus in the plane, with
its left and bottom edges included. A grid state x ∈ S(G) can be viewed as a
collection of points with integer coordinates in this fundamental domain. Similarly,
O = {Oi}

n
i=1 can be viewed as a collection of points in the plane with half-integer

coordinates in the fundamental domain.

During the course of our proof, we will find that MO is given by the formula

(4.5) MO(x) = J (x,x)− 2J (x,O) + J (O,O) + 1,

which we write more succinctly as

MO(x) = J (x−O,x−O) + 1,

thinking of J as extended bilinearly over formal sums and formal differences of
subsets of the plane. Correspondingly, MX is given by

MX(x) = J (x− X,x− X) + 1.

Lemma 4.3.5. Fix a planar realization of a toroidal grid diagram. The function
M(x) = J (x−O,x−O) + 1 satisfies Properties (M-1) and (M-2).

Proof. Let NW(Oi) denote the northwest corner of the square marked with Oi ,
and then project it to the fundamental domain. Clearly,

M(xNWO) =#{(i, j)
∣∣NW(Oi) < NW(Oj)} −#{(i, j)

∣∣NW(Oi) < Oj}(4.6)

−#{(i, j)
∣∣Oi < NW(Oj)}+#{(i, j)

∣∣Oi < Oj}+ 1.

To verify Equation (4.1), we count the number of times each pair (i, j) appears
in the four sets on the right of Equation (4.6). We break this analysis into the
following cases:

• If i 6= j and neither Oi nor Oj is in the top row, then the following four
inequalities are equivalent: Oi < Oj , NW(Oi) < Oj , Oi < NW(Oj) , and
NW(Oi) < NW(Oj) .

• If Oj is in the top row and i 6= j , then Oi < Oj is equivalent to NW(Oi) <
Oj ; while neither of Oi < NW(Oj) nor NW(Oi) < NW(Oj) can hold
(since NW(Oj) is in the bottom segment).

• If Oi is in the top row and i 6= j , neither Oi < Oj nor Oi < NW(Oj)
can hold, while NW(Oi) < Oj is equivalent to NW(Oi) < NW(Oj) .
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• When i = j , there is exactly one Oi -marking for which NW(Oi) < Oi ,
when the Oi is in the top row. Note also that the three other inequalities
Oi < Oi , Oi < NW(Oi) and NW(Oi) < NW(Oi) are never satisfied.

The total to the right-hand-side of Equation (4.6) from the first three cases are
all 0, while the last case contributes −1. It follows that M(xNWO) = 0; i.e. M
satisfies Property (M-1), as stated.

We verify that M satisfies Property (M-2), starting with the case where the rec-
tangle r is contained in the fundamental domain for the torus used to define M .
Label the southwest, northeast, northwest, and southeast corners of r by x1 , x2 ,
y1 , and y2 respectively. Clearly,

x = {x1, x2} ∪ p and y = {y1, y2} ∪ p,

where p = x ∩ y . It is easy to see that

J (x,x)− J (y,y) = 1 +#{x ∈ p
∣∣x > x1}+#{x ∈ p

∣∣x > x2}

+#{x ∈ p
∣∣x < x1}+#{x ∈ p

∣∣x < x2} −#{x ∈ p
∣∣x > y1}

−#{x ∈ p
∣∣x > y2} −#{x ∈ p

∣∣x < y1} −#{x ∈ p
∣∣x < y2}

= 1 + 2{x ∈ p
∣∣x1 < x < x2} = 1 + 2#(x ∩ Int(r)).

Above, the contribution of 1 comes from the pair x1 < x2 . Similarly,

2J (x,O)− 2J (y,O) = #{Oi ∈ O
∣∣Oi > x1}+#{Oi ∈ O

∣∣Oi > x2}

+#{Oi ∈ O
∣∣Oi < x1}+#{Oi ∈ O

∣∣Oi < x2} −#{Oi ∈ O
∣∣Oi > y1}

−#{Oi ∈ O
∣∣Oi > y2} −#{Oi ∈ O

∣∣Oi < y1} −#{Oi ∈ O
∣∣Oi < y2}

= 2#{Oi ∈ O
∣∣x1 < Oi < x2} = 2#(O ∩ r).

The above two equations imply that Equation (4.2) holds when r is contained in
the fundamental domain used to define Equation (4.5).

Next suppose that r satisfies Equation (4.2). Suppose that r′ ∈ Rect(y,x) is the
rectangle with the property that r and r′ meet along both horizontal edges, so that,
in particular, both have the same width v . Then, since every column contains an
O , and every vertical circle contains a component of x , it follows that

#(r′ ∩O) + #(r ∩O) = v

#(x ∩ Int(r′)) + #(x ∩ Int(r)) = v − 1.

These two equations, together with Equation (4.2) (for r ), show that

M(y)−M(x) = 1− 2#(r′ ∩O) + 2#(x ∩ Int(r′)),

which is the analogue of Equation (4.2) for r′ .

In exactly the same manner, Equation (4.2) for r implies the same property for the
rectangle that shares two vertical edges with r .

It follows that if Equation (4.2) holds for any rectangle r ∈ Rect(x,y) , then the
same holds for any other rectangle in Rect(x,y)∪Rect(y,x) . It is easy to see that
at least one of the four rectangles in Rect(x,y) ∪ Rect(y,x) is contained in the
fundamental domain, for which we have already verified Equation (4.2); and hence
the function defined in Equation (4.5) satisfies Property (M-2).



4.3. THE BIGRADING ON GRID STATES 77

Proof of Proposition 4.3.1. Lemma 4.3.5 verifies the existence of a function
that satisfies Properties (M-1) and (M-2). To see that the function is uniquely
characterized by these properties, observe that for any two grid states x and y ,
there is a sequence of grid states x = x1,x2, . . . ,xk = y and rectangles ri ∈
Rect(xi,xi+1) . This follows from the fact that the symmetric group is generated
by transpositions. Thus the function M(x) is uniquely determined up to an overall
additive constant by Equation (4.2). Equation (4.1) specifies this constant.

Note that Equation (4.5) specifies MO using a fundamental domain; but the prop-
erties from Proposition 4.3.1 that uniquely characterize MO make no reference to
this choice. It follows that MO is independent of the fundamental domain.

Next, we verify Equation (4.4), characterizing the Alexander function A .

Proof of Proposition 4.3.3. By Equation (4.2), if r ∈ Rect(x,y) is any rectangle
connecting the two grid states x and y , then

MO(x)−MO(y) = 1− 2#(r ∩O) + 2#(x ∩ Int(r))

MX(x)−MX(y) = 1− 2#(r ∩ X) + 2#(x ∩ Int(r))

Taking the difference of these two equations, and applying Equation (4.3), we con-
clude that Equation (4.4) holds. The function A is characterized up to an additive
constant by Equation (4.4), since we can connect any two grid states by a sequence
of rectangles.

The fact that M takes values in Z implies only that A takes values in 1
2Z . In

view of Equation (4.4), to see that the Alexander function is integral, it suffices to
show that there is one grid state x for which A(x) is integral. Taking x = xNWO ,
and using Equation (4.1), it suffices to show that

(4.7) MX(x
NWO) ≡ n− 1 (mod 2).

To this end, we find a sequence of grid states xi ∈ S(G) for i = 1, . . . , n , with the
following properties:

• x1 = xNWX is the grid state whose components are the northwest corners
of the squares marked with X ,

• xn = xNWO ,
• there is a (not necessarily empty) rectangle connecting xi to xi+1 .

This sequence of can be found, since the permutation that connects xNWO to
xNWX is a cycle of length n (since the grid represents a knot), and such a cycle
can be written as a product of n−1 transpositions. By Equation (4.1), MX(x1) = 0;
so Equation (4.7) now follows from the mod 2 reduction of Equation (4.2).

Exercise 4.3.6. Consider the grid diagram G of Figure 4.3. Show that G rep-
resents W−

0 (T−2,3) , the 0-framed, negative Whitehead double of the left-handed
trefoil knot. Determine the Maslov and Alexander gradings of the grid state x
indicated in the diagram. This example will play a crucial role in Section 8.6.

The following result will be useful later:

Proposition 4.3.7. Let xSWO be the grid state whose components are the lower
left (SW) corners of the squares marked with O . Then, M(xSWO) = 1−n for any
n× n grid.
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Figure 4.3. Grid diagram for the 0-framed, negative
Whitehead double of the left-handed trefoil knot. The grid
state x depicted in the diagram has Maslov grading 2.

Proof. Using the formula M(xSWO) = J (xSWO−O,xSWO−O)+1, we see that
almost all terms cancel in pairs, except for the n pairs Oi and their corresponding
SW (Oi) . The result follows.

Exercise 4.3.8. Let G be any grid diagram, and let xSEO and xNEO , respectively,
be the grid state whose components are the lower resp. the upper right corners of
the squares marked with O . Compute M(xSEO) and M(xNEO) .

4.4. The simplest version of grid homology

In the various grid complexes studied in the present book, the boundary maps
count certain empty rectangles. The various constructions differ in how the empty
rectangles are counted, in terms of how they interact with the X - and O -markings.
(Compare also Section 5.5, where a different construction is outlined.) The simplest
version of the grid complex is the following:

Definition 4.4.1. The fully blocked grid chain complex associated to the

grid diagram G is the chain complex G̃C(G) , whose underlying vector space over
F = Z/2Z has a basis corresponding to the set of grid states S(G) , and whose
differential is specified by

(4.8) ∂̃O,X(x) =
∑

y∈S(G)

#{r ∈ Rect◦(x,y)
∣∣r ∩O = r ∩ X = ∅} · y.

Here #{·} denotes the number of elements in the set modulo 2. (The subscript

on ∂̃O,X indicates the fact that the map counts rectangles that are disjoint from O
and X .)

The reader is invited to show that ∂̃2O,X = 0. This is verified by interpreting

the terms in ∂̃2O,X as counts of regions in the grid diagram that are compositions
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of two rectangles, and then showing that such regions have exactly two different
decompositions into two rectangles, giving rise to pairwise cancelling terms in ∂̃2O,X .
A more general fact will be proved in Lemma 4.6.7 below.

The Maslov and Alexander functions on S(G) induce two gradings on G̃C(G) :

we define G̃Cd(G, s) to be the F -vector space generated by grid states x with
M(x) = d and A(x) = s . It follows quickly from Equations (4.2) and (4.4) that

the restriction of ∂̃O,X to G̃Cd(G, s) maps into G̃Cd−1(G, s). Thus, the bigrading

descends to a bigrading on the homology groups of G̃C(G) . Explicitly, letting

G̃Hd(G, s) =
Ker(∂̃O,X) ∩ G̃Cd(G, s)

Im(∂̃O,X) ∩ G̃Cd(G, s)
,

then
G̃H(G) =

⊕

d,s∈Z

G̃Hd(G, s).

A bigraded vector space X is a vector space equipped with a splitting indexed by
a pair of integers: X =

⊕
d,s∈ZXd,s . In this language, the Maslov and Alexander

functions give G̃H(G) the structure of a bigraded vector space.

Definition 4.4.2. The fully blocked grid homology of G , denoted G̃H(G) , is

the homology of the chain complex (G̃C(G), ∂̃O,X) , thought of as a bigraded vector
space.

Exercise 4.4.3. Let O denote the unknot. Compute G̃H(G) for a 2× 2 grid for

O . Compute G̃H(G) for a 3× 3 grid for O .

The above exercise demonstrates the fact that the total dimension of the homology

G̃H(G) depends on the grid presentation of the knot. In fact, the following will be
proved in Section 5.3:

Theorem 4.4.4. If G is a grid diagram with grid number n representing a knot

K , then the renormalized dimension dimF(G̃H(G))/2n−1 is an integer-valued knot
invariant; in particular, it is independent of the chosen grid presentation of K .

4.5. Background on chain complexes

Theorem 4.4.4 might seem mysterious at this point. Indeed, even the fact that the

dimension of G̃H(G) is divisible by 2n−1 is surprising. To verify this latter fact,
it is helpful to enrich our coefficient ring to a polynomial algebra and to define a
version of the grid complex over this algebra.

In the present section, we recall the necessary tools from homological algebra needed
to study this enrichment. This material is essentially standard, with a small mod-
ifications needed to accommodate the natural gradings arising in grid homology.
More details, and proofs of some of these results, are provided in Appendix A.

Fix a commutative ring K with unit, which in our applications will be either Z ,
the finite field Z/pZ for some prime p , or Q . In fact, through most of this text,
we will take K = Z/2Z = F . Consider the polynomial ring R = K[V1, . . . , Vn] in n
formal variables V1, . . . , Vn . (We also allow n = 0, so that R = K .)
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Definition 4.5.1. A bigraded R-module M is an R -module, together with a
splitting M =

⊕
d,s∈ZMd,s as a K -module, so that for each i = 1, . . . , n , the

restriction of Vi to Md,s maps into Md−2,s−1 . A bigraded R-module homo-
morphism is a homomorphism f : M → M ′ between two bigraded R -modules
that sends Md,s to M ′

d,s for all d, s ∈ Z . More generally, an R -module homomor-

phism from f : M → M ′ is said to be homogeneous of degree (m, t) if it sends
Md,s to M ′

d+m,s+t for all d, s ∈ Z .

A bigraded chain complex over R = K[V1, . . . , Vn] is a bigraded R -module
C , equipped with an R -module homomorphism ∂ : C → C with ∂ ◦ ∂ = 0 that
maps Cd,s into Cd−1,s ; in particular, ∂ is a homomorphism of R -modules that is
homogeneous of degree (−1, 0).

The case where n = 1 will be of particular relevance to us. In this case, we write
the algebra R simply as K[U ] . When n = 0 and K = F , the bigraded modules
are bigraded vector spaces, the structures we encountered in Section 4.4.

Definition 4.5.2. Let (C, ∂) and (C ′, ∂′) be two bigraded chain complexes over
R = K[V1, . . . , Vn] . A chain map f : (C, ∂) → (C ′, ∂′) is a homomorphism of
R -modules, satisfying the property that ∂′ ◦ f = f ◦ ∂ . The chain map f is called
a bigraded chain map if it is also a bigraded homomorphism. More generally, a
chain map is called homogeneous of degree (m, t) if the underlying homomor-
phism is bigraded of degree (m, t) . An isomorphism of bigraded chain complexes
is a bigraded chain map f : (C, ∂) → (C ′, ∂′) for which there is another bigraded
chain map g : (C ′, ∂′) → (C, ∂) with f ◦ g = IdC′ and g ◦ f = IdC . If there is an
isomorphism from (C, ∂) to (C ′, ∂′) , we say that they are isomorphic bigraded
chain complexes, and write (C, ∂) ∼= (C ′, ∂′) .

A bigraded chain map f : C → C ′ between two bigraded chain complexes over R
induces a well-defined bigraded map on homology, denoted H(f) : H(C) → H(C ′) .

If (C, ∂) and (C ′, ∂′) are bigraded chain complexes over R , and f : (C, ∂) →
(C ′, ∂′) is a chain map, we can form the quotient complex (C ′, ∂′)/Im(f) , which is
also a chain complex over R . When f is homogenous of degree (m, t) , the quotient
complex is also a bigraded chain complex of R -modules.

For example, if (C, ∂) is a bigraded chain complex over R = K[V1, . . . , Vn] with
n ≥ 1, then multiplication by Vi i ∈ {1, . . . , n} is a chain map Vi : (C, ∂) → (C, ∂) .
In this case, the quotient complex is denoted C

Vi
; or more suggestively C

Vi=0 . This
construction can be iterated; e.g. we can take the quotient of the chain complex by
the map Vj :

C
Vi

→ C
Vi

; the corresponding quotient will be denoted C
Vi=Vj=0 .

A short exact sequence of chain complexes induces a long exact sequence on ho-
mology, according to the following:

Lemma 4.5.3. Let (C, ∂) , (C ′, ∂′) , and (C ′′, ∂′′) be three bigraded chain complexes
over R = K[V1, . . . , Vn] . Suppose that f : C → C ′ is a chain map which is homo-
geneous of degree (m, t) , and g : C ′ → C ′′ is a bigraded chain map, both of which
fit into a short exact squence

0 −−−−→ C
f

−−−−→ C ′ g
−−−−→ C ′′ −−−−→ 0.
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Then, there is a homomorphism of R-modules δ : H(C ′′) → H(C) that is homoge-
neous of degree (−m− 1,−t) , which fits into a long exact sequence

... Hd−m,s−t(C) Hd,s(C
′) Hd,s(C

′′) Hd−m−1,s−t(C) ...
H(f) H(g) δ

The proof of the above standard result is recalled in Appendix A; see Lemma A.2.1.

Definition 4.5.4. Suppose that f, g : (C, ∂) → (C ′, ∂′) are two bigraded chain
maps between two bigraded chain complexes over R . The maps f and g are said
to be chain homotopic if there is an R -module homomorphism h : C → C ′ that
is homogeneous of degree (1, 0), and that satisfies the formula

(4.9) f − g = ∂′ ◦ h+ h ◦ ∂.

In this case, h is called a chain homotopy from g to f . More generally, if
f, g : (C, ∂) → (C ′, ∂′) are two chain maps that are homogeneous of degree (m, t) ,
they are called chain homotopic if there is a map h : C → C ′ that is an R -module
homomorphism homogeneous of degree (m+ 1, t) and satisfies Equation (4.9)

It is easy to verify that chain homotopic maps induce the same map on homology.

Definition 4.5.5. A chain map f : C → C ′ is a chain homotopy equivalence
if there is a chain map φ : C ′ → C , called a chain homotopy inverse to f ,
with the property that f ◦ φ and φ ◦ f are both chain homotopic to the respective
identity maps. If there is a chain homotopy equivalence from C to C ′ , then C and
C ′ are said to be chain homotopy equivalent complexes.

Proposition 4.5.6. Let C and C ′ be two bigraded chain complexes of R =
K[V1, . . . , Vn]-modules. A chain map f : C → C ′ , homogeneous of degree (m, t) ,
naturally induces a chain map f : C

Vi
→ C

Vi
that is also homogeneous of degree

(m, t) . Moreover, if g is another chain map that is homogeneous of degree (m, t) ,
a chain homotopy h from f to g induces a chain homotopy h from f to g .

Proof. Any R -module homomorphism φ : C → C ′ induces a R -module ho-

momorphism φ : C
Vi

→ C′

Vi
. In this notation, the differential ∂ on C induces the

differential ∂ on C
Vi

. Also, the chain maps f , g , and the chain homotopy h induce

maps f , g , and h : C
Vi

→ C′

Vi
. The relation ∂

′
◦ h+ h ◦ ∂ = f − g is a consequence

of the relation ∂′ ◦ h+ h ◦ ∂ = f − g .

4.6. The grid chain complex GC−

We now enrich the grid complex to a bigraded chain complex over the ring R =
F[V1, . . . , Vn] . Various specializations of this complex give rise to different versions
of grid homology.

To define the enrichment, it is useful to enumerate the set O = {Oi}
n
i=1 . This

puts the O -markings in one-to-one correspondence with the generators Vi of the
polynomial algebra R . Informally, the unblocked grid complex is the R -module
generated by grid states, equipped with a differential ∂−X counting empty rectangles
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that may cross the O - but not the X -markings. The multiplicity Oi(r) of the
rectangle r at the marking Oi is defined to be either 1 or 0, depending on whether
or not r contains Oi . This multiplicity is recorded as the exponent of the formal
variable Vi . More explicitly:

Definition 4.6.1. The (unblocked) grid complex GC−(G) is the free module
over R generated by S(G) , equipped with the R -module endomorphism whose
value on any x ∈ S(G) is given by

(4.10) ∂−X x =
∑

y∈S(G)

∑

{r∈Rect◦(x,y)
∣∣r∩X=∅}

V
O1(r)
1 · · ·V On(r)

n · y.

The elements V k11 · · ·V knn · x where x ∈ S(G) and k1, . . . , kn are arbitrary, non-
negative integers form a basis for the F -vector space GC−(G) . Extend the Maslov
and Alexander functions (Proposition 4.3.1 and Definition 4.3.2) to this basis by

M(V k11 . . . V knn · x) =M(x)− 2k1 − · · · − 2kn,(4.11)

A(V k11 . . . V knn · x) = A(x)− k1 − · · · − kn.(4.12)

These extensions equip GC−(G) with a bigrading: let GC−
d (G, s) denote the vector

subspace spanned by basis vectors V k11 · · ·V knn ·x with M(V k11 · · ·V knn ·x) = d , and

A(V k11 · · ·V knn · x) = s . If x ∈ GC−(G) lies in some GC−
d (G, s) for some d and s ,

we say that x is homogeneous with bigrading (d, s) or simply homogeneous. (Note
that the element 0 is homogeneous with any bigrading.)

Remark 4.6.2. In Chapter 13, we will study another variant of the grid complex,
GC−(G) , which has the same underlying R -module as GC−(G) , a grading induced
by M , and a differential specified by

(4.13) ∂−x =
∑

y∈S(G)

∑

r∈Rect◦(x,y)

V
O1(r)
1 · · ·V On(r)

n · y.

This complex has a filtration which is a knot invariant, and its total homology
is isomorphic to F[U ] . The normalization of M specified by Equation (4.1) was
chosen so that the generator of this homology module has grading equal to zero.

Theorem 4.6.3. The object (GC−(G), ∂−X ) is a bigraded chain complex over the
ring F[V1, . . . , Vn] , in the sense of Definition 4.5.1.

We break the proof of Theorem 4.6.3 into pieces, starting with the verification that
∂−X ◦ ∂−X = 0. To this end, it is convenient to generalize the notion of rectangles.

Recall that the circles α1, . . . , αg, β1, . . . , βg divide the torus into oriented squares
S1, . . . , Sn2 . A formal linear combination of the closures of these squares, D =∑
ai · Si with ai ∈ Z , has a boundary, which is a formal linear combination of

intervals contained inside α1 ∪ · · · ∪ αn ∪ β1 ∪ · · · ∪ βn . Let ∂αD be the portion of
the boundary contained in α1 ∪ · · · ∪ αn and ∂βD be the portion in β1 ∪ · · · ∪ βn .

Definition 4.6.4. Fix x,y ∈ S(G) . A domain ψ from x to y is a formal linear
combination of the closures of the squares in G \ (α ∪ β ) , with the property that
∂(∂αψ) = y − x and hence ∂(∂βψ) = x − y . In these equations, the two sides
represent a formal linear combinations of points; e.g. if x = {x1, . . . , xn} and
y = {y1, . . . , yn} , then x − y =

∑n
i=1(xi − yi) . Denote the set of domains from
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x to y by π(x,y) . A domain ψ is called positive if each square in the torus
(with its orientation inherited from the torus) appears in the expression for ψ with
non-negative multiplicity.

Remark 4.6.5. The grid diagram G equips the torus with a CW -decomposition,
whose 0-cells are the n2 intersection points of the horizontal and the vertical cir-
cles; its 1-cells are the 2n2 intervals on the horizontal and vertical circles between
consecutive intersections of these circles, and its 2-cells are the n2 small squares of
the grid diagram. A formal sum ψ of rectangles is a 2-chain in this CW -complex
structure. The group of 1-chains splits as the sum of the span of the horizontal
intervals and vertical intervals. The 1-chain ∂αψ is the part of ∂ψ in the span of
the horizontal intervals, so the relation ∂(∂αψ) = y−x is an equation of 0-chains.

Domains can be composed: if φ ∈ π(x,y) and ψ ∈ π(y, z) , then by adding the two
underlying 2-chains we get a new domain, written φ ∗ ψ ∈ π(x, z) .

Exercise 4.6.6. (a) Show that any two x,y ∈ S(G) can be connected by a domain
ψ ∈ π(x,y) .
(b) Show that any two x,y ∈ S(G) can be connected by a domain ψ ∈ π(x,y)
with X ∩ ψ = ∅ .
(c) If G represents a knot, show that any domain ψ ∈ π(x,y) with X ∩ ψ = ∅ is
uniquely determined by its multiplicities at the O . What if G represents a link?

The next lemma will be used to establish Theorem 4.6.3. Its proof will serve as a
prototype for many of the proofs from Chapter 5.

Lemma 4.6.7. The operator ∂−X : GC−(G) → GC−(G) satisfies ∂−X ◦ ∂−X = 0 .

Proof. For grid states x and z fix ψ ∈ π(x, z) and (for the purposes of this
proof) let N(ψ) denote the number of ways we can decompose ψ as a composite of
two empty rectangles r1 ∗ r2 . Observe that if ψ = r1 ∗ r2 for some r1 ∈ Rect(x,y)
and r2 ∈ Rect(y, z) , the following statements hold:

• ψ ∩ X is empty if and only if ri ∩ X is empty for both i = 1, 2.
• The local multiplicities of ψ , r1 , and r2 at any Oi ∈ O are related by

Oi(ψ) = Oi(r1) +Oi(r2).

It follows that for any x ∈ S(G) ,

∂−X ◦ ∂−X (x) =
∑

z∈S(G)

∑
{
ψ∈π(x,z)|ψ∩X=∅

}N(ψ) · V
O1(ψ)
1 · · ·V On(ψ)

n · z.

Consider a pair of empty rectangles r1 ∈ Rect◦(x,y) and r2 ∈ Rect◦(y, z) , so that
r1 ∗ r2 = ψ is a domain with N(ψ) > 0. There are three basic cases (see also
Figure 4.4 for an illustration):

(R-1) x\(x∩z) consists of 4 elements. In this case, the corners of r1 and r2 are
all distinct. There is a unique y′ ∈ S(G) and rectangles r′1 ∈ Rect◦(x,y′)
and r′2 ∈ Rect◦(y′, z) so that r1 and r′2 have the same support and r2
and r′1 have the same support. See the top row of Figure 4.4 (and also
Figure 4.5). Then, r1 ∗ r2 = r′1 ∗ r

′
2 and in fact N(ψ) = 2.
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Figure 4.4. Cases in the proof of Lemma 4.6.7. The left col-
umn illustrates the three basic types of domains ψ with N(ψ) > 0
(Cases (R-1), (R-2), and (R-3), respectively). The initial grid state
is indicated by black dots; the terminal one by the white dots. The
second and third columns show the decompositions of the domain
in the first column. The first rectangle in the decomposition is
darker than the second. The intermediate grid state is indicated
by gray dots. In the first row we consider the case of two disjoint
rectangles; these rectangles can also overlap as in Figure 4.5.

2

1

1

21, 21

2

2

11, 2

Figure 4.5. Overlapping domains counted in ∂−X ◦ ∂−X = 0 .
Part of the domain on the left has local multiplicity two (indicated
by the darker shading). The next two pictures show the two de-
compositions of this domain as a juxtaposition of two rectangles.
The rectangles are labeled by integers 1 and 2, indicating their
order in the decomposition.

(R-2) x \ (x ∩ z) consists of 3 elements. In this case, the local multiplicities of
ψ are all 0 or 1 and the corresponding region in the torus has six corners,
five of which are 90◦ , and one of which is 270◦ . Cutting at the 270◦

corner in two different directions gives the two decompositions of ψ as a
juxtaposition of empty rectangles ψ = r1∗r2 = r′1∗r

′
2 , where r1 ∈ π(x,y) ,

r2 ∈ π(y, z) , r′1 ∈ π(x,y′) , and r′2 ∈ π(y′, z) (with y 6= y′ ). In particular,
N(ψ) = 2 in this case, as well. See the middle row of Figure 4.4.
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(R-3) x = z . In this case, ψ = r1 ∗ r2 , where r1 and r2 intersect along two
edges and therefore ψ is an annulus. Since r1 and r2 are empty, this
annulus has height or width equal to 1. Such an annulus is called a thin
annulus; see the bottom row of Figure 4.4. Thin annuli have N(ψ) = 1.

Contributions from Cases (R-1) and (R-2) cancel in pairs, since we are working
modulo 2. There are no contributions from Case (R-3), since every thin annulus
contains one X -marking in it, concluding the proof of the lemma.

Lemma 4.6.8. The differential ∂−X is homogeneous of degree (−1, 0) .

Proof. If V k11 · · ·V knn ·y appears in ∂−X x , then there is a rectangle r ∈ Rect◦(x,y)
with r ∩ X = ∅ , and Oi(r) = ki for i = 1, . . . , n . By Equations (4.2) and (4.11),

M(V k11 · · ·V knn · y) =M(y)− 2#(r ∩O) =M(x)− 1,

so the Maslov grading drops by one under the differential. Similarly, Equations (4.4)
and (4.12) give

(4.14) A(V k11 · · ·V knn · y) = A(y)−#(r ∩O) = A(x)−#(r ∩ X).

Since r ∩ X = ∅ , it follows that A(V k11 · · ·V knn · y) = A(x) ; i.e. ∂−X preserves the
Alexander grading.

Proof of Theorem 4.6.3. Equations (4.11) and (4.12) ensure that multiplication
by Vi is a homogeneous map of degree (−2,−1); i.e. GC−(G) is a bigraded module
over F[V1, . . . , Vn] . The differential is defined to be an R -module homomorphism;
Lemma 4.6.8 ensures that it is homogeneous of degree (−1, 0). The theorem now
follows from Lemma 4.6.7.

The complex GC−(G) generalizes G̃C(G) , since

(4.15)
GC−(G)

V1 = . . . = Vn = 0
∼= G̃C(G).

We study now further properties of GC−(G) .

Lemma 4.6.9. For any pair of integers i, j ∈ {1, . . . , n} multiplication by Vi is
chain homotopic to multiplication by Vj , when thought of as homogeneous maps

from GC−(G) to itself with degree (−2,−1) .

Proof. Variables Vi and Vj are called consecutive if there is a square marked by
X in the same row as Oi and in the same column as Oj . Suppose that Vi and
Vj are consecutive, and let Xi denote the X -marking in the same row as Oi and
in the same column as Oj . Define a corresponding homotopy operator that counts
rectangles that contain Xi in their interior:

(4.16) Hi(x) = HXi
(x) =

∑

y∈S(G)

∑

{r∈Rect◦(x,y)
∣∣Int(r)∩X=Xi}

V
O1(r)
1 · · ·V On(r)

n · y.
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It follows immediately from Proposition 4.3.1 and Equation (4.4) that Hi is homo-
geneous of degree (−1,−1). The proof of Lemma 4.6.7 shows that 1

∂−X ◦ Hi +Hi ◦ ∂
−
X = Vi − Vj .

In this adaptation, count decompositions of domains ψ with N(ψ) > 0 and which
contain Xi (and no other X ∈ X) with multiplicity one in their interior. In addition
to the types of pairs appearing in Cases (R-1) and (R-2) of Lemma 4.6.7, there are
two thin annuli that contribute to ∂−X ◦Hi+Hi ◦ ∂

−
X , and those are the two annuli

(horizontal and vertical) through Xi . The contributions of these two annuli are
multiplication by Vi and multiplication by Vj .

For general Vi and Vj , since K is a knot there is a sequence of variables Vi =
Vn1

, . . . , Vnm
= Vj where Vnk

and Vnk+1
are consecutive. Adding the chain homo-

topies, we deduce that Vi is homotopic to Vj .

Remark 4.6.10. Lemma 4.6.9 uses the fact that the grid diagram G represents
a knot, rather than a link: in general, the actions of variables corresponding to
different link components are not chain homotopic; cf. also Lemma 8.2.3. For more
on the case of links, see Section 9.1 and Chapter 11.

Definition 4.6.11. Fix some i ∈ {1, . . . , n} . The unblocked grid homology of
G , denoted GH−(G) , is the homology of (GC−(G), ∂−X ) , viewed as a bigraded
module over F[U ] , where the action of U is induced by multiplication by Vi .

Lemma 4.6.9 shows that the grid homology groups, thought of as bigraded modules
over F[U ] , are independent of the choice of i . Lemma 4.6.9 also inspires the
following further construction:

Definition 4.6.12. Fix some i = 1, . . . , n . The quotient complex GC−(G)/Vi is

called the simply blocked grid complex , and it is denoted ĜC (G) . The simply

blocked grid homology of G , ĜH (G) , is the bigraded vector space obtained as

the homology of ĜC (G) = (GC−(G)/Vi, ∂
−
X ) .

Remark 4.6.13. Explicitly, GC−(G)/Vn is the bigraded F -vector space with basis

V k11 · · ·V
kn−1

n−1 · x , where k1, . . . , kn−1 are arbitrary non-negative integers and x ∈

S(G) ; equipped with a differential ∂̂X,On
specified by ∂̂X,On

◦ Vj = Vj ◦ ∂̂X,On
for

j = 1, . . . , n− 1, and for any x ∈ S(G) ,

∂̂X,On
(x) =

∑

y∈S(G)

∑

{r∈Rect◦(x,y)
∣∣r∩X=∅,On(r)=0}

V
O1(r)
1 · · ·V

On−1(r)
n−1 · y.

We shall see that ĜH is a finite dimensional vector space that is independent of
the choice of i , in Corollaries 4.6.16 and 4.6.17 below. But first, we explain how to

extract the vector space ĜH (G) from G̃H(G) , in terms of the following notation.
Let X and Y be two bigraded vector spaces

X =
⊕

d,s∈Z

Xd,s and Y =
⊕

d,s∈Z

Yd,s.

1Note thatVi − Vj = Vi + Vj in R . We write Vi − Vj , since that expression is what shows

up when we work with Z coefficients, as in Chapter 15.
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Their tensor product X⊗Y =
⊕

d,s∈Z(X⊗Y )d,s is the bigraded vector space, with

(4.17) (X ⊗ Y )d,s =
⊕

d1 + d2 = d

s1 + s2 = s

Xd1,s1 ⊗ Yd2,s2 .

Definition 4.6.14. Let X be a bigraded vector space, and fix integers a and b .
The corresponding shift of X , denoted XJa, bK , is the bigraded vector space that
is isomorphic to X as a vector space and given the bigrading XJa, bKd,s = Xd+a,s+b .

Let W be the two-dimensional bigraded vector space with one generator in bigrad-
ing (0, 0) and another in bigrading (−1,−1), and let X be any other bigraded
vector space, then the tensor product X ⊗W is identified with two copies of X ,
one of which is equipped with a shift in degree:

(4.18) X ⊗W ∼= X ⊕XJ1, 1K.

This can be iterated; for example, X ⊗W⊗2 ∼= X ⊕XJ1, 1K ⊕XJ1, 1K ⊕XJ2, 2K .

Proposition 4.6.15. Let G be a grid diagram representing a knot. Let W be the
two-dimensional bigraded vector space, with one generator in bigrading (0, 0) and
the other in bigrading (−1,−1) . Then, there is an isomorphism

(4.19) G̃H(G) ∼= ĜH (G)⊗W⊗(n−1)

of bigraded vector spaces, where ĜH (G) = H(GC
−(G)
Vi

) for any i = 1, . . . , n .

Proof. We will prove by induction on j that

(4.20) H

(
GC−(G)

V1 = · · · = Vj = 0

)
∼= H

(
GC−(G)

V1 = 0

)
⊗W⊗(j−1).

We interpret W 0 as a one-dimensional vector space in bigrading (0, 0), so that the
isomorphism W⊗a ⊗W ∼= W⊗(a+1) holds for all a ≥ 0. In the basic case where
j = 1, Equation (4.20) is a tautology.

For the inductive step, for j > 1 consider the short exact sequence
(4.21)

0 −−−−→ GC−(G)
V1=···=Vj−1=0

Vj
−−−−→ GC−(G)

V1=···=Vj−1=0 −−−−→ GC−(G)
V1=···=Vj=0 −−−−→ 0.

Using Proposition 4.5.6, the chain homotopy between Vj and V1 provided by
Lemma 4.6.9, induces a chain homotopy between the chain map

Vj :
GC−(G)

V1 = · · · = Vj−1 = 0
→

GC−(G)

V1 = · · · = Vj−1 = 0

and the 0 map, so the long exact sequence on homology associated to the short exact
squence from Equation (4.21) (cf. Lemma 4.5.3) becomes a short exact sequence

0 H( GC−(G)
V1=···=Vj−1=0 ) H( GC−(G)

V1=···=Vj=0 ) H( GC−(G)
V1=···=Vj−1=0 ) 0,

where the second arrow preserves bigradings, and the third is homogeneous of
degree (1, 1). Thus, this short exact sequence of vector spaces translates into the
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first isomorphism of bigraded vector spaces appearing in the following:

H

(
GC−(G)

V1 = · · · = Vj = 0

)
∼= H

(
GC−(G)

V1 = · · · = Vj−1 = 0

)
⊗W ∼= ĜH (G)⊗W⊗(j−1),

and the second isomorphism follows from the inductive hypothesis. This completes
the inductive step, verifying Equation (4.20) for all j = 1, . . . , n .

In view of Equation (4.15), when j = n , Equation (4.20) gives Equation (4.19) for
i = 1. Numbering our formal variables differently, we conclude that Equation (4.19)
holds for arbitrary i .

The chain complex G̃C(G) is finite dimensional over F , so its homology G̃H(G)

is also finite dimensional. Although ĜC (G) is infinite dimensional over F , Propo-
sition 4.6.15 has the following immediate consequence:

Corollary 4.6.16. For a grid diagram G with grid number n , the vector space

ĜH (G) is finite dimensional, the dimension of G̃H(G) is divisible by 2n−1 , and

in fact 2n−1 · dimF ĜH (G) = dimF G̃H(G) .

Corollary 4.6.17. The simply blocked grid homology ĜH (G) = H(GC−(G)/Vi)
is independent of the choice of i = 1, . . . , n .

Proof. From Proposition 4.6.15, it follows that for i, j ,

(4.22) H

(
GC−(G)

Vi

)
⊗W (n−1) ∼= H

(
GC−(G)

Vj

)
⊗W (n−1)

as bigraded vector spaces.

Just as a finite dimensional vector space is determined up to isomorphism by its
dimension, a finite dimensional bigraded vector space Y is determined up to iso-
morphism by its Poincaré polynomial PY , the Laurent polynomial in q and t :

(4.23) PY (q, t) =
∑

d,s∈Z

dimYd,s · q
dts.

Letting Yi = H(GC
−(G))
Vi

) , Equation (4.22) translates into the equation

(1 + q−1t−1)n−1 · PYi
(q, t) = (1 + q−1t−1)n−1 · PYj

(q, t),

so PYi
= PYj

, and hence H(GC
−(G)
Vi

) ∼= H(GC
−(G)
Vj

) as bigraded vector spaces.

Another relation among the grid homology groups is given by the following:

Proposition 4.6.18. There is a long exact sequence relating ĜH (G) and GH−(G) :

· · · → GH−
d+2(G, s+ 1)

U
→ GH−

d (G, s) → ĜH d(G, s) → GH−
d+1(G, s+ 1) . . .

Proof. Consider the short exact sequence

0 → GC−(G)
Vi−→ GC−(G) → ĜC (G) → 0

of bigraded chain complexes of F[Vi] -modules, where the first map is, of course,
homogeneous of degree (−2,−1). The associated long exact sequence in homology
(Lemma 4.5.3) gives the statement of the proposition.
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p+p− p +

−+

−

Figure 4.6. Winding numbers. The diagram illustrates the
equality wD(p) = I(p,O − X) (interpreting the winding number
as intersection of the knot projection with the ray p+ ), and at
the same time the equality wD(p) = I(O−X, p) (interpreting the
winding number as intersection with the ray p− ).

A key feature of the grid homology groups ĜH (G) and GH−(G) is that they are
knot invariants, in the following sense.

Theorem 4.6.19. The homologies ĜH (G) and GH−(G) (the former thought of as
a bigraded F-vector space, the latter thought of as a bigraded F[U ]-module) depend
on the grid G only through its underlying (unoriented) knot K .

The proof of the above theorem will be given in Chapter 5.

4.7. The Alexander grading as a winding number

The aim of the present section is to give geometric insight into the bigrading from
Section 4.3. Byproducts include a practical formula for computing A and a relation-
ship between grid homology and the Alexander polynomial. The geometric inter-
pretation of the Alexander grading rests on the following formula, which expresses
the winding number about a knot projection in terms of planar grid diagrams.

Lemma 4.7.1. Let G be a planar grid diagram of a knot K , let D = D(G) be the
corresponding knot projection in the plane, and let p be any point not on D . Then,
the winding number wD(p) of D around p is computed by the formula

(4.24) wD(p) = J (p,O− X).

Proof. If p = (x, y) is any point not contained in D , then I(p,O − X) is the
(signed) intersection number of the ray p+ from p to (+∞, y) with D : the vertical
arc connecting some O with X contributes +1 if the O lies in this upper right
quadrant and the X does not, and it contributes −1 if the X lies in this upper
right quadrant and the O does not, and it contributes 0 otherwise; i.e.

#(p+ ∩ D) = I(p,O− X).

Similarly, the intersection number of the ray p− from p to (−∞, y) with D is

#(p− ∩ D) = I(O− X, p).

Clearly, wD(p) = #(p+ ∩ D) = #(p− ∩ D) . Average the above two equations to
get Equation (4.24).
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Fix a planar realization of a toroidal grid diagram, and consider the function A′

on the grid state x ∈ S(G) defined by

(4.25) A′(x) = −
∑

x∈x

wD(x).

As we shall see shortly, A and A′ differ by a constant (independent of the grid
state). We express this constant in terms of quantities which we have met already
in Section 3.3. To this end, recall that each of the 2n squares marked with an X
or O has 4 corners, giving us a total of 8n lattice points on the grid (possibly
counted with multiplicity, when the marked squares share a corner), which we
denote p1, . . . , p8n . The sum of the winding numbers at these points, divided by
8, was denoted by a(G) in Section 3.3. The precise relationship between A and
A′ can now be stated as follows:

Proposition 4.7.2. Choose a planar realization of a toroidal grid diagram G rep-
resenting a knot K . Let D be the corresponding diagram of K . The Alexander
function A can be expressed in terms of the winding numbers wD by the following
formula:

(4.26) A(x) = −
∑

x∈x

wD(x) +
1

8

8n∑

j=1

wD(pj)−

(
n− 1

2

)
= A′(x) + a(G)−

n− 1

2
.

Proof. Summing Equation (4.24) over all the components x ∈ x , gives A′(x) =
−J (x,O− X) ; so

A(x) =
1

2
(MO(x)−MX(x))−

(
n− 1

2

)

= −J (x,O− X) +
1

2
(J (O,O)− J (X,X))−

(
n− 1

2

)

= A′(x) +
1

2
J (O+ X,O− X)−

(
n− 1

2

)
.

Thus, Equation (4.26) now follows once we show that

(4.27)
1

2
J (O+ X,O− X) =

1

8

8n∑

i=1

wD(pi).

To check Equation (4.27), we first verify the following: given any small square (in
a planar grid) whose center z is marked with an O or an X , if z1, . . . , z4 denote
its four corner points in the plane, then
(4.28)

J (z,O−X) =
1

4
J (z1 + z2 + z3 + z4,O−X) +





− 1
4 if z is marked with an O

1
4 if z is marked with an X.

Suppose for definiteness that z is marked with an O . Then, for any marking
O′ ∈ O with O 6= O′ ,

J (z,O′) =
1

4
J (z1 + z2 + z3 + z4, O

′).
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z1

z3 z4

z2 z2

z4

z1

z3

z1 z2

z4z3

z1 z2

z3 z4

Figure 4.7. Verification of Equation (4.28). Here are the four
cases where the distinguished square z is marked with an O . To
verify the equation, find the pairs contributing to J (z1 + · · · +
z4, X) , where X is in the same row or column as z , and to J (z1+
· · ·+ z4, O) , where the O -marking is at z .

Also, for any X -marking not in the same row or column as z ,

J (z,X) =
1

4
J (z1 + z2 + z3 + z4, X).

The correction of − 1
4 comes from the pairing of the X -markings in the same row

and column as z with the formal sum z1 + · · ·+ z4 , combined with the pairing of
the O -marking on z with z1 + · · · + z4 ; see Figure 4.7. A similar reasoning gives
Equation (4.28) when z is marked with an X .

Equation (4.27) follows from summing up Equation (4.28) over all O - and X -
marked squares, and using Lemma 4.7.1.

Lemma 4.7.3. The sign of the permutation that connects x with xNWO is (−1)M(x) .

Proof. This is an immediate consequence of Proposition 4.3.1, combined with the
mod 2 reductions of Equations (4.1) and (4.2).

Definition 4.7.4. Let X =
⊕

d,sXd be a bigraded vector space. Define the
graded Euler characteristic of X to be the Laurent polynomial in t given by

χ(X) =
∑

d,s

(−1)d dimXd,s · t
s.

The Euler characteristic of grid homology is related to the Alexander polynomial,
according to the following:

Proposition 4.7.5. Let G be a grid diagram for a knot K with grid index n . The

graded Euler characteristic of the bigraded vector space G̃H(G) is given by

(4.29) χ(G̃H(G)) = (1− t−1)n−1 ·∆K(t),

where ∆K(t) is the symmetrized Alexander polynomial of Equation (2.3).

Proof. It is a standard fact that the Euler characteristic of a chain complex agrees
with that of its homology (and this fact remains true in the bigraded case). Thus,

χ(G̃H(G)) = χ(G̃C(G)) =
∑

x∈S(G)

(−1)M(x)tA(x).



92 4. GRID HOMOLOGY

By Proposition 4.7.2 (for the t -power) and Lemma 4.7.3 together with Proposi-
tion 4.3.7 (for the sign), it follows that this graded Euler characteristic agrees with

∑

x

(−1)M(x)tA(x) = (−1)n−1ǫ(G) · det(M(G)) · ta(G) · t
1−n
2 .

The result now follows from Theorem 3.3.6.

Proposition 4.7.5 relates the Euler characteristic of G̃H(G) and the Alexander
polynomial of the underlying knot. This leads quickly to the following relationship

between the Alexander polynomial and the graded Euler characteristic of ĜH

(4.30) χ(ĜH (K)) =
∑

d,s

(−1)d dim ĜH d(K, s) · t
s ∈ Z[t, t−1].

Theorem 4.7.6 ([173, 192]). The graded Euler characteristic of the simply blocked
grid homology is equal to the (symmetrized) Alexander polynomial ∆K(t) :

χ(ĜH (K)) = ∆K(t).

Proof. The graded Euler characteristic of the bigraded vector space W from
Lemma 4.6.15 is χ(W ) = 1− t−1 , so the identity follows immediately from Propo-
sitions 4.7.5 and 4.6.15.

4.8. Computations

Assuming Theorem 4.6.19, we can directly compute some of the homology groups
defined earlier in this chapter. See also Chapter 10 for more computations.

Proposition 4.8.1. For the unknot O , ĜH (O) ∼= F is supported in bigrading
(0, 0) ; and GH−(O) ∼= F[U ] as F[U ]-modules, and its generator has bigrading
(0, 0) .

Proof. In the 2 × 2 grid diagram G representing the unknot, there are exactly
two generators; call them p and q , with A(p) = 0, M(p) = 0, A(q) = −1,
M(q) = −1. The complex GC−(G) is generated over F[V1, V2] by these two
generators, and its boundary map is specified by

∂−X (p) = 0, ∂−X (q) = (V1 + V2) · p.

The homology of this complex is clearly isomorphic to F[U ] , generated by the cycle
p ; this completes the computation of GH−(O) .

For ĜH (O) , we can set V2 = 0, to obtain the complex over F[V1] with generators
p and q , and boundary specified by

∂−X (p) = 0, ∂−X (q) = V1 · p,

whose homology is F , generated by the cycle p .
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With more work, one can show that the grid homology groups of the right-handed
trefoil knot K = T2,3 are given by:

ĜH d(K, s) =

{
F if (d, s) ∈ {(0, 1), (−1, 0), (−2,−1)}
0 otherwise.

(4.31)

GH−
d (K, s) =

{
F if (d, s) = (0, 1) or (d, s) = (−2k,−k) for k ≥ 1
0 otherwise.

(4.32)

In the second case, the F[U ] -module structure is determined by the property that
U : GH−

−2k(K,−k) → GH−
−2k−2(K,−k− 1) is an isomorphism for all k ≥ 1. More

succinctly, we write

GH−(K) ∼= (F[U ]/U)(0,1) ⊕ (F[U ])(−2,−1),

where the subscripts on the cyclic F[U ] -modules denote the bigradings of their
generators.

Exercise 4.8.2. Let K denote the right-handed trefoil knot.
(a) Use Figure 3.3 to verify Equation (4.31). (Hint: Show first that there are no

generators for G̃C(G) in Alexander grading greater than 1. Next, find generators

of G̃C(G) in Alexander gradings 0, 1, and −5, and apply Proposition 4.6.15.)
(b) Verify Equation (4.32). (Hint: Proposition 4.6.18 might be helpful.)

(c) Let K denote the left-handed trefoil knot. Compute ĜH (K) and GH−(K) .

Remark 4.8.3. The result of Exercise 4.8.2 shows that grid homology distinguishes
the right-handed trefoil T2,3 from its mirror T−2,3 . See Proposition 7.1.2 for a
general description of how homology behaves under reflection.

Restricting attention to a carefully chosen Alexander grading, we can give a more
general computation valid for all torus knots.

Figure 4.8. Grid diagram for T−3,7 . This is the diagram for
T−p,q from Exercise 3.1.5(c), when p = 3 and q = 7. The grid
state x+ is indicated by the heavy dots in the grid.

Lemma 4.8.4. Let p, q > 1 relatively prime integers. There is a grid diagram G for
T−p,q with the following property. If x+ = xNEX is the grid state which occupies
the upper right corner of each square marked with X , then this grid state is the
unique generator with maximal Alexander grading among all generators, and

A(x+) =
(p− 1)(q − 1)

2
.
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Proof. Let G be the (p+ q)× (p+ q) grid diagram with σO = (1, . . . , p+ q) and
σX = (p+ 1, p+ 2, . . . , p) ; see Figure 4.8. (Compare also Exercise 3.1.5(c)).

Consider the associated winding matrix Mp,q = W(G) . In the jth row, the winding
numbers start out zero for a while, they increase by 1’s until they reach their
maximum, then they stay constant, and then eventually they drop by 1’s. More
precisely: the left column and bottom row vanish; for j = 1, . . . , q , in the jth row
(from the top), the first q − j + 1 entries are 0 and all others are positive; while
for j = q + 1, . . . , p+ q − 1, the last j − q entries and the first entry are 0 and all
others are positive.

For example, for the torus knot T−3,7 from Figure 4.8, this matrix is

M3,7 =




0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 2 2 1
0 0 0 0 0 1 2 3 2 1
0 0 0 0 1 2 3 3 2 1
0 0 0 1 2 3 3 3 2 1
0 0 1 2 3 3 3 3 2 1
0 1 2 3 3 3 3 3 2 1
0 1 2 2 2 2 2 2 1 0
0 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0




.

It follows at once that for x+ all the winding numbers are zero, and for all other
grid states x , the sum of the winding numbers −A′(x) is positive; so by Proposi-
tion 4.7.2, x+ is the unique grid state with maximal Alexander grading.

Elementary computation shows that

J (x+,x+) =
p(p− 1) + q(q − 1)

2
J (O,O) =

(p+ q)(p+ q − 1)

2

J (x+,O) =
p2 + q2

2
MX(x

+) = 1− p− q;

so using Definition 4.3.2 we find that

A(x+) =
1

2
(MO(x

+)−MX(x
+))−

p+ q − 1

2
=

(p− 1)(q − 1)

2
.

Proposition 4.8.5. Fix relatively prime, positive integers p and q with p, q > 1 .

Some of the grid homology groups ĜH (T−p,q) are given by the following:

ĜH d(T−p,q, s) =





F if s = (p−1)(q−1)
2 and d = (p− 1)(q − 1)

0 if s = (p−1)(q−1)
2 and d 6= (p− 1)(q − 1)

0 if s > (p−1)(q−1)
2 .

Proof. According to Lemma 4.8.4, ĜC (T−p,q) has no generators with Alexander

grading greater than (p−1)(q−1)
2 ; and it has a single one with Alexander grading
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equal to (p−1)(q−1)
2 . The formulas in the proof of Lemma 4.8.4 also show that

M(x+) = (p− 1)(q − 1).

To give further examples, we find it convenient to encode the grid homology by

its Poincaré polynomial PK(q, t) =
∑
d,s dim ĜH d(K, s)t

sqd (introduced in Equa-

tion (1.2)). Using a direct computer computation, Baldwin and Gillam [5] com-
puted the grid homology of all knots with at most twelve crossings. In particular,
for the eleven crossing Kinoshita-Terasaka knot KT and for its Conway mutant
C of Figure 2.7 (compare also [183, Section 5.4] and [180, Section 3]) they found
that:

(4.33) PKT (q, t) = (q−3+q−2)t−2+4(q−2+q−1)t−1+6q−1+7+4(1+q)t+(q+q2)t2,

(4.34) PC(q, t) = (q−4 + q−3)t−3 + 3(q−3 + q−2)t−2 + 3(q−2 + q−1)t−1 + 2q−1

+3 + 3(1 + q)t+ 3(q + q2)t2 + (q2 + q3)t3.

(Among non-trivial knots with at most eleven crossings, these are the two knots
with Alexander polynomial equal to 1.)

Although these are not computations one would wish to perform by hand, there
are pieces which can be verified directly. For example:

Exercise 4.8.6. Consider Figure 4.9, a grid diagram for the Conway knot.
(a) Show that the grid states pictured on the figure are the only two grid states
in Alexander grading 3, and that there are no grid states in greater Alexander
grading.
(b) Show that there are no empty rectangles connecting the two grid states. Use
this to verify that the coefficient in front of the t3 term in the Poincaré polynomial
of the Conway knot PC(q, t) is, indeed,(q2 + q3) , as stated in Equation (4.34), and
that all higher t -powers have vanishing coefficients.

Figure 4.9. Two grid states for the Conway knot. The
white ones appear only in one of the grid states, the black ones
appear only in the other, and the gray dots appear in both.
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Figure 4.10. Two grid states for the Kinoshita-Terasaka
knot. We have exhibited here two grid states on the same grid,
with the same conventions as in Figure 4.9.

Exercise 4.8.7. Consider the grid diagram of the Kinoshita-Terasaka knot KT
from Figure 4.10. (Notice that the diagram for the Kinoshita-Terasaka knot we
gave in Figure 3.4 differs from this diagram by a single commutation.)
(a) Show that there are exactly four grid states in Alexander grading 2, and none
with Alexander grading greater than 2. (Hint: Two of the grid states in Alexander
grading 2 are pictured in Figure 4.10. Find the other two.)
(b) Show that the homology of the resulting chain complex in Alexander grad-
ing 2 has dimension 2. Use this to verify that the coefficient in front of t2 in
PKT (q, t) is (q2 + q1) , and all coefficients with higher t -powers vanish, as stated
in Equation (4.33).

Remark 4.8.8. For a typical grid diagram of the Kinoshita-Terasaka knot with grid
number 11, the number of generators in Alexander grading 2 is rather large. For
the choice we gave here, there are four generators, and this makes the computation
of the grid homology in this Alexander grading easy.

4.9. Further remarks

The argument from Lemma 4.6.7 is a combinatorial analogue of the proof, in La-
grangian Floer homology, that the Lagrangian Floer complex is, in fact, a chain
complex. The proof in that case hinges on Gromov’s compactness theorem, to-
gether with gluing results for solutions of the relevant non-linear Cauchy-Riemann
operator. These results are key ingredients in the development of Lagrangian Floer
homology. Likewise, the combinatorial arguments from Lemma 4.6.7, although they
are much simpler, also lie at the core of grid homology. Arguments of this type will
appear throughout the text. (See for example Lemma 4.6.9 and Lemma 5.1.4.)



CHAPTER 17

Open problems

In this chapter we collect open problems which are naturally related to grid dia-
grams and grid homologies. We have divided these problems into two sections: in
Section 17.1, we collected problems about grid diagrams and grid homology, and in
Section 17.2, we discuss problems in knot Floer homology. Some of the problems in
Section 17.1 have already been solved using the holomorphic theory; in that case,
we are asking for a proof within the framework of grid homology (i.e. without
appealing to the equivalence with the holomorphic theory).

17.1. Open problems in grid homology

Unknot detection. Knot Floer homology is known to detect the unknot. (See
Theorem 1.3.1.) From the equivalence between grid homology and knot Floer
homology, it follows that grid homology detects the unknot.

Problem 17.1.1. Use grid diagrams directly to show that grid homology detects

the unknot; that is, show that a knot K ⊂ S3 with ĜH (K) = F is the unknot.

Seifert genus. In fact, knot Floer homology (and therefore grid homology) detects
the Seifert genus of a knot. (See Theorem 1.3.2.) Once again, the proof of this result
relies on the holomorphic version of the theory.

Problem 17.1.2. Without appealing to the equivalence with the holomorphic the-
ory, show that grid homology detects the Seifert genus of a knot; that is, for any
knot K ⊂ S3 ,

g(K) = max{s | ĜH ∗(K, s) 6= 0}.

Note that Dynnikov [37] has an algorithm for detecting the unknot using grid
diagrams. This result prompts the following question:

Problem 17.1.3. Is there a direct algorithm for detecting knot genus using grid
diagrams, in the spirit of Dynnikov’s unknot detection algorithm?

An optimistic version of the above is the following question: if G is a grid diagram
for a knot K whose associated genus is minimal among all grid diagrams G′ that
differ from G by sequences of commutation moves, does it follow that either (1) G
can be destabilized after a sequence of commutation moves or (2) the associated
genus of G agrees with the Seifert genus of K ?

Fiberedness. In a similar vein, Theorem 1.3.3 shows that knot Floer homology
detects whether or not a knot is fibered. The proof relies on the holomorphic
geometric definition of knot Floer homology.

345
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Problem 17.1.4. Without appealing to the equivalence with the holomorphic the-
ory, show that grid homology detects fiberedness of a knot; that is, any knot K of

genus g(K) is fibered if and only if rk ĜH ∗(K, g(K)) = 1.

A few easier, related problems along these lines are the following.

Problem 17.1.5. Suppose that K is a fibered knot with genus g(K) . Is there a
grid diagram G with the property that there is a unique grid state in Alexander
grading s = g(K) and no grid states in any larger grading?

For torus knots, a grid diagram with the above property was given in Lemma 4.8.4.

Problem 17.1.6. Show directly that if G is a grid diagram with a unique grid state
x in some grading s and no grid states in any larger grading, then K is fibered.

A theorem of Stallings [214] states that K is fibered if and only if the commutator
subgroup of π1(S

3\K) is finitely generated. Perhaps the presentation of π1(S
3\K)

described in Lemma 3.5.1 is useful in considering these questions.

Computations. For knots with sufficiently small grid number, grid homology can
be explicitly computed, especially with the help of a computer. Computations of
the grid homology groups of infinite families of knots is typically harder. Grid
homology groups of certain infinite families of knots were computed in Chapters 9
and 10.

An important infinite family one might wonder about is the case of torus knots.
According to Theorem 16.2.6, the knot Floer homology for a positive torus knot
can be computed directly from the Alexander polynomial of the knot. That formula
can be proved either by working with a suitable genus-1 Heegaard diagram, or by
appealing to more abstract principles [178].

Problem 17.1.7. Compute the grid homology of the torus knot Tp,q purely within
the framework of grid homology.

Naturality. We have shown that two grid diagrams representing isotopic knots
have isomorphic grid homology groups.

Problem 17.1.8. Does an isotopy between two knots induce a well-defined isomor-
phism between the corresponding unblocked grid homology groups?

There are analogous questions for the simply blocked theory, which involves choos-
ing a particular point p on the knot (corresponding to the special Oi marking
in the diagram). In this case, one would expect pointed isotopies to induce maps
between the simply blocked invariants.

To put this into context, for i = 1, 2, let (S3,Ki, pi) be a knot equipped with a
basepoint pi ∈ Ki . In [98], it is shown that a diffeomorphism from S3 to itself
carrying K1 to K2 and p1 to p2 induces a well-defined isomorphism between the

corresponding knot Floer homology groups ĤFK. Sarkar [204] has defined and
computed the action of moving the basepoint around the knot.

Maps associated to knot cobordisms.

Problem 17.1.9. Does an oriented knot cobordism from K1 to K2 induce a map
between the corresponding grid homology groups?
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As noted earlier, it is natural to expect that the surfaces appearing above also
should have some additional structure.

Candidate maps associated to one-handles appear in Chapters 8 and 9; compare
also [95].

As a special case, a slice disk should induce an element of knot Floer homology.

Problem 17.1.10. Can knot Floer homology be used to distinguish pairwise non-
isotopic slice disks for a given knot?

In a different direction:

Problem 17.1.11. Does an unoriented knot cobordism from K1 to K2 induce a
map between the corresponding simply blocked grid homology groups?

Candidate maps associated to one-handles, in a sufficiently stabilized setting, ap-
pear in the unoriented skein exact sequence.

Spectrum-valued refinement.

Problem 17.1.12. Is there a space X~L that can be associated to an oriented link
~L , that is functorial under oriented saddle moves, and whose singular homology

coincides with ĜH (~L)?

Since the Maslov grading can take negative values, we need to have a variant of
spaces that have homology in negative dimension. Such a generalized version of a
space exists in algebraic topology: it is called a spectrum, see for example [228].

In [206], Sarkar constructed spaces that correspond to certain quotient complexes

of G̃H(G) . Sarkar conjectures that these could be fit together in a natural way to
construct the spectrum asked for in Problem 17.1.12. More generally, one might
hope to find a spectrum X−

K with an S1 -action, whose S1 -equivariant cohomology

is GH−(K) . A further challenge would be to find a filtration on a spectrum,
generalizing the filtered quasi-isomorphism type from Chapter 13.

Note that for Seiberg-Witten theory, and Y a rational homology three-sphere,
Manolescu [130] constructed an S1 -spectrum whose S1 -equivariant cohomology is
monopole Floer homology. This construction uses analysis of the Seiberg-Witten
monopole equations; see also [129].

In a different direction, Lipshitz and Sarkar [122] constructed a spectrum associated
to Khovanov homology.

17.2. Open problems in knot Floer homology

Knot Floer homology and the fundamental group. It would be very inter-
esting to find a concrete relationship between the fundamental group of the comple-
ment of a knot and its knot Floer homology. One possible relationship is provided
by a conjecture of Kronheimer and Mrowka [111], stating that the dimension of
knot Floer homology (with coefficients in a field of characteristic zero) is equal to
the dimension of instanton knot Floer homology [53]. Note that Floer’s instanton
homology is related to certain SO(3) representations of the fundamental group of
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the knot complement. For other connections between Heegaard Floer homology
and the fundamental group, see [15].

The Fox-Milnor condition. Many of the properties of knot Floer homology are
lifts or generalizations of various familiar properties of the Alexander polynomial.
Conspicuously missing from this list is the Fox-Milnor condition: if K is a slice
knot, then there is a polynomial f in t with the property that ∆K(t) = f(t)·f(t−1) .
One might think that this generalizes to the statement that if K is a slice knot,

then ĈFK(K) ∼= C ⊗ C∗ for some chain complex C , where C∗ denotes the dual
complex of C . This would, in turn, imply that the total rank of the knot Floer
homology of a slice knot is a perfect square. In fact, this is not the case. For
example, the Kinoshita-Terasaka knot of Figure 2.7 is slice, but its total homology,
which can be computed using grid diagrams, has rank 33 (see Equation (4.33)).
This leaves open a vague question:

Problem 17.2.1. What can be said about the structure of knot Floer homology
for smoothly slice knots?

One might also hope to derive clues about potentially differentiating slice and ribbon
knots (cf. Remark 2.6.3). This leads to the following (similarly vague) problem:

Problem 17.2.2. What can be said about the structure of knot Floer homology
for ribbon knots?

In a slightly different direction, a knot K is called doubly slice if there is an un-
knotted embedding of S2 in S4 whose intersection with an equatorial S3 is K .

Problem 17.2.3. What can be said about the structure of knot Floer homology
for a doubly slice knot?

Counting more holomorphic curves. Knot Floer homology is defined as a
version of Lagrangian Floer homology in the g -fold symmetric product. As such,
it counts holomorphic disks in this symplectic manifold.

Problem 17.2.4. Can moduli spaces of curves with genus g > 0 (and boundaries
in Tα and Tβ ) be used to construct stronger knot invariants than knot Floer
homology?

In [120], Lipshitz reformulates Heegaard Floer homology, so that the holomorphic
curves counted in the differential correspond to embedded curves in [0, 1] × R ×
Σ. Lipshitz also formulates a version that counts curves with double-points, and
includes a power series variable that records the number of double-points.

For grid diagrams, Lipshitz rephrases this in concrete terms, as described in Sec-
tion 5.5. It remains an open problem to see if the double-point enhancement gives
more information:

Problem 17.2.5. For every knot K , is the double-point enhanced grid homology
isomorphic to GH−(K)[v] (in the notation of Definition 5.2.15)?

For more on this proposed homology theory, see [120, 121].

Mutations. First, recall the operation of (Conway) mutation: suppose that K is
a knot with a projection with a distinguished disk whose boundary circle meets the
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projection in four points, that we think of as equally spaced around the boundary
circle. Let K ′ be the new knot obtained by cutting out the disk, rotating it 180◦

in the plane, and then regluing it. It is known that the Alexander polynomial is
mutation invariant, that is, if K ′ is a mutant of K then ∆K′(t) = ∆K(t) .

Knot Floer homology is not mutation invariant: the Conway and the Kinoshita-
Terasaka knots (shown in Figure 2.7) are mutants, but the knot Floer homologies of
these two knots are different. (See Exercises 4.8.6 and 4.8.7.) More conceptually, the
genera of the knots are different, so by Theorem 1.3.2 their knot Floer homologies
cannot be isomorphic as bigraded groups. The total dimensions of the knot Floer
homologies, however, are the same. In fact, if we collapse the Maslov grading M and
Alexander grading A on knot Floer homology to a single grading δ =M −A , the
δ -graded grid homology groups of the Kinoshita-Terasaka and the Conway knots
are the same. More generally, Baldwin and Levine [6] conjecture an affirmative
answer to the following question:

Problem 17.2.6. Is the δ -graded knot Floer homology invariant under mutation?

Related questions can be asked for Khovanov homology; see [14, 226]. An analo-
gous problem can be considered for genus 2 mutations; see [149].

Linking and link Floer homology. The linking number places restrictions on

link Floer homology. For example, if L is a link with two components, and ~L is any

orientation on L , the δ -graded link Floer homology of ~L , and the linking number

of the two components, determine the link Floer homology ĤFL(L) of L , endowed
with any of its four possible orientations. (See for example Proposition 10.2.1.)

There are higher order obstructions to linking, due to Milnor [142], which can be
reexpressed in terms of Massey products [138, 189].

For example, let ~L = ~L1 ∪ ~L2 ∪ ~L3 be an oriented link with three components,

and suppose that the linking numbers of any two components of ~L vanishes. (An
example to keep in mind here is the Borromean rings.) Then, there are Seifert

surfaces Fi for ~Li with Fi ∩ ~Lj = ∅ for i 6= j . The triple Milnor invariant is
obtained as a signed number of triple points in F1 ∩ F2 ∩ F3 ; see [26].

Problem 17.2.7. Do the Milnor invariants place algebraic restrictions on the struc-
ture of link Floer homology?

Torsion in knot Floer homology. Consider knot Floer homology with integer
coefficients.

Problem 17.2.8. Is there a knot K with the property that the abelian group

ĤFK(K;Z) has torsion?

Concordance invariants. The invariant τ(K) can be computed once one cal-
culates GH−(G) . It is natural to wonder if τ(K) is easier to compute than knot
Floer homology. For example:

Problem 17.2.9. Is there a direct way to compute the parity of τ(K) for a knot?

Of course, such a computation would lead to a computation of τ , just as one can
compute the signature of a knot K from the Alexander polynomials of all the knots
in an unknotting sequence; see Remark 2.3.12.
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Using integer coefficients, we defined τ(K,Q) and, for each prime p , an invariant
τ(K;Z/pZ) in Section 15.6.

Problem 17.2.10. Exhibit a knot K and two primes p and q , for which τ(K;Z/pZ) 6=
τ(K;Z/qZ) ; or a knot K and a prime p for which τ(K;Z/pZ) 6= τ(K;Q) .

Note that Problem 17.2.8 is independent of Problem 17.2.10. (See Example 15.6.2.)

As a point of comparison, Khovanov homology can also be used to construct an
invariant s(K) similar to τ(K) . Just as τ has a collection of variations, indexed
by prime numbers p , there is also a corresponding collection of s invariants. The
fact that the Q -version and the Z/2Z -version of these s invariants can be different
has been verified by C. Seed, using his program Knotkit. (For the 14-crossing knot
K = K14n19265, s with coefficients in Z/2Z is different from s with coefficients
in Q .) For more questions along these lines for Khovanov homology, see Section 6
of [123].

We formulate an optimistic variant of Problem 17.2.10 in terms of the smooth
concordance group of knots, the group C of equivalence classes of knots, where
K1 ∼ K2 if K1#m(−K2) is a slice knot. (Addition in this group is defined by
taking connected sum.) It follows from a Künneth principle that τ(K,Z/pZ) is
additive under connected sums; since it vanishes for slice knots (Theorem 15.6.1), it
follows that for each prime p , the map K 7→ τ(K;Z/pZ) induces a homomorphism
τZ/pZ : C → Z from the smooth concordance group to the integers. Similarly, K 7→
τ(K;Q) induces a homomorphism τQ from the smooth concordance group to the
integers.

Problem 17.2.11. Is the infinite collection of homomorphisms τZ/pZ , indexed by
primes p , together with τQ linearly independent, as homomorphisms from the
smooth concordance group to the integers?

Knot Floer homology in fact can be used to construct infinitely many linearly
independent homomorphisms from the concordance group C to Z . The first such
construction is due to Hom [88]. We will describe a different method from [165]
which rests on a simple modification of the construction of τ .

As a preliminary step, take a rational number t ∈ [0, 2] , and consider the module
GCt(G) over the polynomial algebra F[vt] generated freely by grid states. Equip
the module GCt(G) with a grading induced by grt(v

tmx) = M(x) − tA(x) − tm .
For a rectangle r ∈ Rect(x,y) , let X(r) denote the number of X -markings in r ,
and let O(r) denote the number of O -markings in r . Consider the F[vt] -module
endomorphism specified by

(17.1) ∂tx =
∑

y∈S

∑

{r∈Rect◦(x,y)}

#

(
M(φ)

R

)
vtX(r)+(2−t)O(r)y.

Obviously, multiplication by v drops grt by one; it is also fairly easy to see that
the endomorphism ∂t is a differential that drops the grading grt by 1.

Although the homology of GCt(G) is not a knot invariant (because of stabilizations;

i.e. like G̃H(G) , there is an extra factor of a two-dimensional vector space, taken to
the (n− 1)st tensor power, where n is the grid number of the diagram G), we can
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define ΥK(t) to be the maximal grt of any grt -homogeneous, non-torsion class in
H(GCt(G)) . According to [165], for each rational number t ∈ [0, 2] , that quantity
is a knot invariant. The function ΥK(t) can be naturally extended to a piecewise
linear, continuous function on [0, 2] ; and indeed, Υ gives a homomorphism from
the smooth concordance group of knots to the vector space of real-valued, piecewise
linear, continuous functions on [0, 2] . Thus, Υ gives plenty of room to detect
infinitely many linearly independent knots.

Using sign assignments as in Chapter 15, the construction of Υ can be adapted
to coefficients in Z , and hence specialized once again to Z/pZ and Q . There are
natural analogues of Problem 17.2.10, and more optimistically, Problem 17.2.11 for
the resulting functions on [0, 2] , where ΥK(t;Z/pZ) and ΥK(t;Q) play the roles
of the integers τ(K;Z/pZ) and τ(K;Q) .

Transverse invariants. The transverse invariant of a link gives an invariant
in grid homology. As in Section 14.3, viewing grid homology as the associated
graded object for the filtered knot invariant, the transverse invariant inherits extra
structures.

Recall the language of Definition 14.4.1: the transverse invariant is said to be a
cycle to order n if there is a chain x ∈ GC−(G) with the following properties:

• if a = sl(T )+1
2 , then x ∈ FaGC

−(G) ;

• the projection of x to GC−(G, sl(T )+1
2 ) is a cycle, and it represents θ(T ) ∈

GH−(G, sl(T )+1
2 ) ;

• ∂x ∈ Fa−nGC
−(G) .

Problem 17.2.12. Given n ≥ 1, is there a transverse knot T whose invariant θ(T )
can be represented by a cycle to order n but not n+ 1?

An example with n = 1 is given in Proposition 14.4.6.

Given k , knot types with k distinct transverse representatives with the same self-
linking number are found in [48]. Different examples would be supplied by an
affirmation of the following:

Problem 17.2.13. Given any n > 2, is there an n -tuple of transverse knots
T1, . . . , Tn that are smoothly isotopic, and with the same self-linking number, so
that θ(Ti) can be represented by a cycle to order i but not i+ 1?

Module realization in knot Floer homology.

Problem 17.2.14. Characterize the graded F[U ] -modules that arise as knot Floer
homology groups of knots.

Problem 17.2.15. Which graded F[U ] -modules arise as knot Floer homology groups
of more than one knot?

Note that the unknot is the only knot that has ĤFK of rank one [172]. A theorem of
Ghiggini [71] (see also Theorem 1.3.3) implies that the trefoil knots and the figure-
eight knot are uniquely characterized by their knot homologies. On the other hand,
infinitely many knots with the same knot Floer homology modules were described
in Section ??; see also [84].
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The obvious generalization of these problems is the following:

Problem 17.2.16. Characterize the multi-graded F[U1, . . . , Uℓ] -modules that arise
as link Floer homology groups of links.

A simpler question can be asked: what polytopes arise as grid homology polytopes?
This is equivalent to the question of characterizing Thurston polytopes of links in
R3 .

Axiomatic characterizations of Floer homology. Let W be the two-dimensional
bigraded vector space with one generator in bigrading (0, 0) and another in bi-
grading (−1,−1), and J be the four-dimensional bigraded vector space with one
generator in bigrading (0, 1), one in (−2,−1), and two generators in bigrading
(−1, 0).

Definition 17.2.17. Let H(~L) be an oriented link invariant, which has the form of
a bigraded module over F[U ] . We say that H satisfies the oriented skein exact

sequence if for each oriented skein triple (~L+, ~L−, ~L0) , there are exact triangles
of bigraded F[U ] -modules (with grading shifts indicated on the arrows):

H(~L+) H(~L−)

H(~L0)

(−1, 0)

if the two strands at the distinguished crossing of ~L+ belong to the same compo-
nent; and

H(~L+) H(~L−)

H(~L0)⊗ J

(−1, 0)

if the two strands at the distinguished crossing of ~L+ belong to different compo-
nents.

Problem 17.2.18. Are there any bigraded link invariants H , other than collapsed
grid homology, that satisfy the following two properties:

• with Un denoting the n -component unlink, H(Un) ∼= F[U ]⊗W⊗n−1 , and
• H satisfies the oriented skein sequence?

Analogous questions can be asked for the simply blocked grid homology, and coef-
ficients in Z in place of F .

Note that Khovanov and Khovanov-Rozansky have constructed other homology
theories for knots [103, 104, 105] that satisfy similar skein exact sequences; com-
pare also [131, 212]. There are various conjectures relating these invariants to knot
Floer homology. There is a conjectured spectral sequence from reduced Khovanov

homology to ĤFK, see [194]; and from reduced HOMFLY homology to ĤFK,
see [36].
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[11] J. Birman. Braids, links, and mapping class groups. Princeton University Press, Princeton,

N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 82.
[12] J. Birman and M. Hirsch. A new algorithm for recognizing the unknot. Geom. Topol., 2:175–

220 (electronic), 1998.

[13] J. Birman and W. Menasco. Stabilization in the braid groups. II. Transversal simplicity of
knots. Geom. Topol., 10:1425–1452 (electronic), 2006.

[14] J. Bloom. Odd Khovanov homology is mutation invariant. Math. Res. Lett., 17(1):1–10,
2010.

[15] S. Boyer, C. Gordon, and L. Watson. On L-spaces and left-orderable fundamental groups.
Math. Ann., 356(4):1213–1245, 2013.

[16] P. Braam and S. Donaldson. Floer’s work on instanton homology, knots, and surgery. In
H. Hofer, C. Taubes, A. Weinstein, and E. Zehnder, editors, The Floer Memorial Volume,

number 133 in Progress in Mathematics, pages 195–256. Birkhäuser, 1995.
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[177] P. Ozsváth and Z. Szabó. Knots with unknotting number one and Heegaard Floer homology.
Topology, 44(4):705–745, 2005.
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filtered, 253
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of surfaces, 218
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crossing change, 30

cyclic permutation, 56

degree, 354

destabilization, 53, 225
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map, 114

graded, 262
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determinant, 28

unnormalized, 28, 174

domain

destabilization, 263

complexity, 263

hexagon, 102

pentagon, 98

413



414 INDEX

positive, 83

rectangle, 72
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graded, 136

exact

sequence, 356
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extension

non-split, 304

spin, 303
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vertical type, 317

figure-eight knot, 22, 72

filtered
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quasi-isomorphism type, 256

stabilization map, 289

filtration

algebraic, 281

initial, 281

level, 254

five lemma, 358

flattened surface, 66

nearly, 66

four-ball genus, 39

Fox calculus, 35

Fox-Milnor condition, 40, 348

framing, 36

contact, 223

front projection, 224

fundamental domain, 72

gauge transformation, 298

genus

four-ball, 39

Seifert, 27, 345

slice, 39

graded

Euler characteristic, 136

grid

bridge index, 174

complex

bigraded, 143

collpased, 143

double-point enhanced, 116

filtered, 258

fully blocked, 78

multi-filtered, 295

sign-refined, 299

simply blocked, 86, 144

simply blocked, filtered, 260

unblocked, 82

diagram, 49

Borromean rings, 51

Conway knot, 51

extended, 150

fundamental group, 69

Kinoshita-Terasaka knot, 51

planar, 49, 174

toroidal, 55

trefoil knot, 51

homology, 79

collapsed, 142, 143

double-point enhanced, 116

fully blocked, 79, 144

Kanenobu knot, 192

of mirror, 140

polytope, 197

pretzel knot, 191

quasi-alternating link, 190

sign-refined, 300

simply blocked, 86, 196
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structure of, 137

symmetry of, 138

torus knot, 191

twist knot, 191

unblocked, 86, 196
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index, 49

invariant

Legendrian, 230

transverse, 243

Legendrian

knot, 227

matrix, 58

move, 54

commutation, 52

cross-commutation, 55

cyclic permutation, 56

destabilization, 53

stabilization, 53

number, 49

planar realization, 55

state, 71

x
NWO,xSWO , 74

writhe, 174

handlebody, 331

Heegaard

decomposition, 331

diagram, 331

(1,1), 333

doubly-pointed, 332

multi-pointed, 340

Hessian, 376

hexagon, 102

empty, 102

holomorphic strip, 334

homogeneous element, 82
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Hopf link, 23

invariance
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swicth, 105

knot, 19

(1,1), 333

alternating, 24, 35, 47, 180

Conway, 22

determinant, 28

diagram, 20

equivalence, 19

fibered, 23

figure-eight, 23, 72

group, 20

Kanenobu, 37, 170, 192

Kinoshita-Terasaka, 22

Legendrian, 221

pretzel, 22

ribbon, 39, 40

signature, 28, 40

slice-ribbon conjecture, 40

torus, 21, 346

transverse, 221

trefoil, 21

twist, 23

knot Floer homology, 338

Legendrian

grid invariant, 129, 230

isotopy, 223

knot, 223

associated to a planar grid, 227

destabilization, 225

stabilization, 225

non-simple, 226

Reidemeister theorem, 225, 380

simple, 226

link, 19

alternating, 24

determinant, 29

diagram, 20

equivalence, 19

grid homology, 142

group, 20

quasi-alternating, 173

signature, 31

split, 30

link Floer homology, 340

linking number, 26

map

homogeneous, 354

mapping cone, 106, 109, 358

Maslov

function, 74

grading, 74, 337, 354

merge move, 145

Milnor Conjecture

torus knots, 128

module

rank of, 365

moduli space, 335

Morse

function, 376

theory, 376

move

commutation, 97

destabilization, 53

merge, 145

saddle, 41

split, 145

stabilization, 53, 106

switch, 105

multi-filtered grid complex, 295

mutation, 349

nearest point map, 99, 123

nondegenerate

critical point, 377

normal form, 42, 403

nugatory crossing, 180

pair

alternative, 298

pentagon, 98, 122

empty, 99

pesudo-holomorphic strip, 336

planar realization, 55, 72

polytope

Alexander, 217

grid homology, 197

Thurston, 219

pretzel knot, 22, 191

quasi-alternating link, 173, 180

grid homology, 190

quasi-isomorphism, 109, 355

filtered, 256

quaternion, 329

rank, 365

module, 120

rectangle, 72

empty, 74

merge, 319

swap, 319

Reidemeister move, 20, 373

Legendrian, 224

transverse, 239

ribbon

knot, 39

singularity, 42

rotation number, 223
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Seifert

form, 28

framing, 36

genus, 27

Conway, 136

Kinoshita-Terasaka, 136

matrix, 28

surface, 26, 63

Conway knot, 69

Kinoshita-Terasaka knot, 69

stabilization, 26, 389

Seifert’s algorithm, 389

shift, 87

sign assignment, 298

sign-refined

destabilization, 317

grid

complex, 299

homology, 300

signature, 28

skein

exact sequence, 157

relation, 33, 157

sequence

sign-refined, 326

unoriented, 182

triple, 61, 326

grid realization, 61

oriented, 34

unoriented, 177

slice

Bennequin inequality, 237

disk, 39

genus, 39

torus knot, 142

surface, 39

topologically, 40, 154

slice-ribbon conjecture, 40, 404

special diagram, 45, 390

spectral sequence, 281

spin

extension, 303

group, 301, 328

rotation, 302

split move, 145

stabilization, 26, 53, 117, 225, 389

map, 117

filtered, 289

types, 53

surface

algorithmic, 389

Seifert, 26

slice, 39

switch, 54, 130

symmetric

group, 301

spin extension, 304

product, 333

τ (tau-invariant)

τ -set, 146
estimate, 132
of a knot, 119, 120, 328
of a link, 146
of mirror, 140

Thurston
norm, 218
polytope, 219
semi-norm, 218

Thurston-Bennequin invariant, 223
topologically slice, 40, 154
toroidal grid diagram, 55
torsion, 349, 364

U -torsion, 364
submodule, 120

torus
knot, 21, 94, 169, 191

τ , 126
negative, 21

link, 22, 191
transposition, 302

generalized, 303

transverse
grid invariant, 243
isotopy, 238
knot, 238
push-off, 240
Reidemeister theorem, 239

transversely

non-simple, 243
simple, 243

trefoil, 93, 169
Whitehead double of, 155

twist knot, 23, 169, 191

uncollapsed grid homology, 194
unknotting

bound, 31, 121
signed, 31, 129

number, 30, 119
unnormalized determinant, 28, 174
unoriented skein triple, 177

Whitehead double, 36, 155
Whitney

disk, 334
umbrella, 374

winding number, 58
writhe, 26, 174


