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First-Passage Fundamentals

1.1. What Is a First-Passage Process?

This book is concerned with the first-passage properties of random walks
and diffusion, and the basic consequences of first-passage phenomena. Our
starting point is the first-passage probability; this is the probability that a
diffusing particle or a random-walk first reaches a specified site (or set of
sites) at a specified time. The importance of first-passage phenomena sterns
from its fundamental role in stochastic processes that are triggered by a first-
passage event. Typical examples include fluorescence quenching, in which
light emission by a fluorescent molecule stops when it reacts with a quencher;
integrate-and-fire neurons, in which a neuron fires only when a fluctuating
voltage level first reaches a specified level; and the execution of buy/sell orders
when a stock price first reaches a threshold. Further illustrations are provided
throughout this book.

I.I.I. A Simple Illustration
To appreciate the essential features of first-passage phenomena, we begin
with a simple example. Suppose that you are a nervous investor who buys
stock in a company at a price of $100. Suppose also that this price fluctuates
daily in a random multiplicative fashion. That is, at the end of each day the
stock price changes by a multiplicative factor f < I or by f-1 compared with
the previous day's price, with each possibility occurring with probability 1/2
(Fig. 1.1). The multiplicative change ensures that the price remains positive.
To be concrete, let's take f = 90% and suppose that there is a loss on the first
day so that the stock price drops to $90. Being a nervous investor, you realize
that you don't have the fortitude to deal with such a loss and wish to sell your
stock. However, because the price fluctuates randomly you also think that it
might be reasonable to wait until the stock recovers to its initial price before
selling out.

Some of the basic questions you, as an skittish investor, will likely be asking
yourself are: (1) Will I eventually break even? (2) How long do I have to wait
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panic	 break-even

47.8 53.1 59.0 65.6 72.9 81 90 100 price
n=7 6	 5 4	 3	 2	 1	 0

Fig. 1,1. Daily stock price, when it changes by a multiplicative factor of f =	 or
f —1 = 1.11 • • - with equal probabilities. The starting price is $100. Panic selling occurs
if the stock price drops to les than half us initial value.

until I break even? (3) While I am waiting to break even, how low might the
stock price go? (4) Is it a good idea to place a limit order, i.e., automatically
sell if the stock falls below a specified price? Clearly, the answers to these
questions will help you to make an informed decision about how to invest in
this toy market.

To make these questions precise and then answer them, note that the price
performs a symmetric random walk in n, where n = N+ — N_ is the dif-
ference in the number of "up" and "down" days, N+ and N_, respectively.
After N N+ N_ trading days, the stock price will be f" x $100. In our
example, the random walk started at n = 0 (price $100) and after one day
it jumped to Pi = 1, corresponding to a stock price of $90. The question of
break even after a first-day loss can be rephrased as, What is the probability
that a random walk that starts at n = 1 eventually returns to, or equivalently,
eventually hits n = 0? As discussed in Section 1.5, this eventual return prob-
ability equals one; you are sure to recoup your initial loss. However, the
time squired for recouping this loss, averaged over all possible histories of
the stock pike., is infinite! Just as disconcerting, while you are waiting for-

t
ever to ensue recovery of.'your initial investment, your capital can achieve
a vanishing 1t.), small value. You would need a strong stomach to survive this
stock market! These seemingly paradoxical features have a natural expla-
nation in terms of the first-passage probability of a random walk. Our goal
will be to develop a general understanding of first-passage properties for both
random walk and diffusion phenomena in a variety of physically relevant
situations.

An important aspect of first-passage phenomena is the conditions by which
a random-walk process terminates. Returning to our stock market with 10%
daily price fluctuations, suppose that you would panic and sell out if the stock
price were to sink to less than one-half of its initial value, in addition to
selling, if and when the price returns to its original value. Selling out at a loss
would occur the first time that there are 7 more down days than up days. We
can then ask, What it the probability of selling at break even or selling at
a loss? How long will it take before one of these two events occurs? These
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are the types of questions that are answered by the study of first-passage
phenomena.

1.1.2. Fundamental Issues

The basic questions of first-passage phenomena are the following:

• What is the time dependence of the first-passage probability F(F,t)?
This is the probability that a random walk or a diffusing particle hits
a specified point FJbr the .first time at time r. More generally, what is
the first-passage probability for a diffusing particle to hit a set of
points?

As we shall discuss in Section 1.2, the first-passage probability can be ob-
tained directly from the more familiar occupation probability P(F, 0. This is
the probability that a diffusing particle is located at r at lime I. Note that we are
using the terms random walk and diffusing particle loosely and interchange-
ably. Although these two processes are very different microscopically, their
long-time properties - including first-passage characteristics - are essentially
the same. In Section 1.3 it is shown how diffusion is merely the continuum
limit of any sufficiently well-behaved random-walk process. Thus in the rest
of this book we will use the description that best suits the situation under
discussion.

In many cases, the diffusing particle physically disappears or "dies" when
the specified point or set of points is hit. We can therefore think of this set
as an absorbing boundary for the particle. This picture then leads to several
more fundamental first-passage-related questions:

• What is the survival probability S(t), that is, the probability that a dif-
fusing particle has not hit the absorbing boundary by time t?

• How long does it take for the diffusing particle to die, that is, hit the
absorbing boundary? More precisely, what is the mean time until the
particle hits a site on the absorbing boundary as a function of the parti-
cle's starting point? This is often referred to as the mean first-passage
time or mean exit time.

• Where on the absorbing boundary does the particle get absorbed?

Another interesting feature arises in systems for which the boundary B con-
sists of disjoint subsets, for example, B = B1 U B2, with B 1 and B2 nonover-
lapping. Then it is worthwhile to determine whether the diffusing particle is
eventually absorbed in B1 or in B2 as a function of the initial particle posi-
tion. This is often known as the splitting probability. For the nervous-investor



example presented above, the splitting probabilities refer to the probabilities
of ultimately selling at break even or at a 50% loss. More precisely:

• For an absorbing boundary that can be decomposed into disjoint subsets
Bi and B2 , what is the splitting probability, namely, the probability that
a diffusing particle will eventually be trapped on B I or trapped on B2.

as a function of the initial particle position?

We conclude this introduction with a brief synopsis of the answers to the
above questions. For a diffusing particle in a finite domain with an absorbing
boundary, the survival probability S(t) typically decays exponentially with
time (Chap. 2). Roughly speaking, this exponential decay sets in once the dis-
placement of the diffusing particle becomes comparable with the linear size
of the domain. Correspondingly, the mean time (t) until the particle hits the
boundary is finite. On the other hand, if the domain is unbounded (Chaps. 3
and 5-7) or if boundaries move (Chap. 4), then the geometry of the absorb-
ing boundary is an essential feature that determines the time dependence of
the survival probability. For such situations, S(r) either asymptotically ap-
proaches a nonzero value or it decays as a power law in time, with the decay
exponent a function of the boundary geometry. In our nervous-investor exam-
ple, the techniques of Chap. 2 will tell us that (s)he will (fortunately) break
even 6/7 of the time and will be in the market for 6 days, on average, before
selling out.

To determine where on the boundary a diffusing particle is absorbed, we
shall develop a powerful but simple analogy between first-passage and elec-
trostatics (Section 1.6). From this classic approach, we will learn that the
probability for a particle, which starts at F o , to eventually exit at a point F
on the bounry equals the electric field at i , when all of the boundaries are
grounded conductors and a point charge is placed at i. From this electrostatic
analogy, the splitting probability between two points is simply the ratio of the
corresponding electrostatic potentials at these points. Because the potential
is a linear function of the distance between the source and the observer, we
can immediately deduce the splitting probabilities of 6/7 (break even) and
1/7 (panic sell at a 50% loss) of the nervous-investor example.

In the rest of this chapter, basic ideas and techniques are introduced to aid
in understanding the first-passage probability and the fundamental quantities
that derive from it. In the remaining chapters, many features of first-passage
phenomena are illustrated for diffusion processes in a variety of physically rel-
evant geometries and boundary conditions. Many of these topics are covered in
books that are either devoted entirely to first-passage processes [Kemperman
(1961), Dynkin &Arushkevich (1969), Spitzer (1976), and Syski (1992)] or
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in books on stochastic processes that discuss first-passage processes as a
major subtopic [Cox & Miller (1965), Feller (1968), Gardiner (1985), Risken
(1988), Hughes (1995), and van Kampen (1997)].

1.2. Connection between First-Passage and Occupation Probabilities

We now discuss how to relate basic first-passage characteristics to the familiar
occupation probability of the random walk or the probability distribution of
diffusion. An important starting fact is that the survival probability S(t) in
an absorbing domain equals the integral of the first-passage probability over
all time and over the spatial extent of the boundary. This is simply a conse-
quence of the conservation of the total particle density. Thus all first-passage
characteristics can be expressed in terms of the first-passage probability itself.

We now derive the relation between the first-passage probability and the
probability distribution. Derivations in this spirit are given, e.g„ in Montroll
and Weiss (1965), Fisher (1984), and Weiss (1994). We may express this
connection in equivalent ways, either in terms of discrete-space and -time
or continuous-space and -time variables, and we will use the representation
that is most convenient for the situation being considered. Let us start with a
random walk in discrete space and time. We define P(i, t) as the occupation
probability; this is the probability that a random walk is at site i at time t
when it starts at the origin. Similarly, let F (F, t) be the first-passage probabil-
ity, namely, the probability that the random walk visits F for the first time at
time t with the same initial condition. Clearly F(F, 0 asymptotically decays
more rapidly in time than P(F, t) because once a random walk reaches F,
there can be no further contribution to F(i- , t), although the same walk may
still contribute to P(r, t).

Strategically, it is simplest to write P 0 in terms of F(F, t) and then
invert this relation to find F(F, t). For a random walk to be at F at time t, the
walk must first reach F at some earlier time step t' and then return to F after

0

Fig. 1.2. Diagrammatic relation between the occupation probability of a random walk
(propagation is represented by a wavy itne) and the first-passage probability (straight
line).



6	 First-Passage Fundamentals

t — t' additional steps (Fig. 1.2). This connection between F(F' , t) and P(P7' ,
may therefore be expressed as the convolution relation

P(F, t) =	 + E F(1 , t') P(0, t — t t), 	 (12.1)
ei <1

where 8, is the Kronecker delta function. This delta function term accounts
for the initial condition that the walk starts at 7 = O. Note that returns before
time t are also permissible as long as there is also a return t — t' steps after
the first return. Because of the possibility of multiple visits to 7 between time
t i and t, the return factor involves P rather than F .

This convolution equation is most conveniently solved by introducing the
geneiating functions,

	00 	 00

P(F, z) 	 p ( F, 	 F (F, , E F(F, Oz r .
	1=0	 :=0

If we were dealing with a random walk in continuous time, we would first
replace the sum over discrete time in E. (1.2.1) with an integral and then
use the Laplace transform. However, the ensuing asymptotic results would be
identical. To solve for the first-passage probability, we multiply E. (1.2.1)
by z' and sum over all t. We thereby find that the generating functions are
related by

	p(r-	 z)	 8,0 + F(F,	 (0, z).	 (1.2.2)

Thus we-obtain the fundamental connection

� 0
F (I! , 7)' (1.23)

i= 0
P(0, z)

in which the generating function, or equivalently, the Laplace transform 'of
the first-passage probability, is determined by the corresponding transform
of the probability distribution of diffusion P(F , i). This basic relation and its
many consequences are also treated extensively in Montroll (1965), Montroll
and Weiss (1965), Weiss and Rubin (1983), and Weiss (1994).

Because this probability distribution is basic to understanding diffusion
and because it also determines the first-passage probability, several comple-
mentary approaches are presented to derive the first-passage probability in
Section 1.3. In Section 1.4, it is shown how to relate basic probabilities in
real time with their corresponding generating function or Laplace transform.
Armed with this information, we then obtain the asymptotics of the first-
passage probability in Section 1.5.
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1.3. Probability Distribution of a One-Dimensional Random Walk

We now discuss basic features of the probability distribution of a random
walk, as well as the relation between random walks and diffusion. Much of
this discussion is standard but is included for completeness and to illustrate
the universal asymptotic behavior of the various representations of random
walks in terms of diffusion. Derivations of varying degrees of completeness
and sophistication can be found, e.g., in Reif (1965) and van Kampen (1997).
In deriving P , 1). we treat in detail the nearest-neighbor random walk in one
dimension and merely quote results for higher dimension as needed. We start
with the easily visualized discrete-space and -time hopping process and then
proceed to the continuum diffusion limit. The order of presentation is chosen
to help advertise the relative simplicity of the continuum representation. These
derivations also serve to introduce the mathematical tools that will be used in
treating first-passage properties, such as Fourier and Laplace transforms, the
generating function, and basic asymptotic analysis.

1.3.1. Discrete Space and Time

Consider a particle that hops at discrete times between neighboring sites on a
one-dimensional chain with unit spacing. Let P(x , N) be the probability that
the particle is at site x at the Nth time step. The evolution of this occupation
probability is described by the master equation

P(x N A-- 1) = p P (x — 1, N)	 P(x + 1, N).	 (1.3.1)

This states that the probability for the particle to be at x at time N + 1 is
amply p times the probability of being at x — 1 at time N (contribution of a
step to the right) plus q time the probability of being at x + 1 at time N (step
to the left). The case p = q = is the symmetric random walk, whereas for
p > q there is a uniform bias to the right and for p < q a bias to the left (see
Fig. 1.3).

Because of translational invariance in both space and time, it is natural to
solve this equation by transform techniques. For this example, we therefore

-----Thk .----mak ----milk ----mak ----mak ----iak
1 	 I 	 I 	 I 	 I 	 I 

X — 3 x-2 x-1 x x+1 x+2 x+3

I—p

Fig. 1.3. The hopping processes for the one -dimensional nearest-neighbor random walk
defined by Eq. (L3.1).
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define the combined generating function and Fourier transform:

as 	 cx,
P (k, z ) ,  	 eikx P(x, N).

In all the discussions that follow, either the arguments of a function or the
context (when obvious) will be used to distinguish the transform from the
function itself.

Applying this combined transform to the master equation, and multiplying
by one additional factor of z, gives

DO 	 CC+E E k_ixe [P(x,N + 1) = p P(x 1, N) q P(x + 1,N)].

(1.3.2)

The left-hand side is just the generating function P(k , z), except that the term
P(x , N = 0) is missing. Similarly, on the right-hand side the two factors are
just the generating function at x - 1 and at x + 1 times an extra factor of z.
The Fourier transform then converts these shifts of ±1 in the spatial argument
to the phase factors e ± i k , respectively. These steps give

DO

P(k, z) 	 E P(x , N = 0)ekx = z(peth qe -ik )P(k, z).
x= --00

zu(k)P(k, z), 	 (13.3)

whei-e-u(k is the Fourier transform of the single-step hopping probability.
For our bi d nearest-neighbor random walk, u(k) is u(k) = pe k qe- ' k .
The subtra term on the left-hand side of Eq. (1.3.3) compensates for the
absence of a term of the order of z0 in Eq. (1.3.2). Thus for the initial condi-
tion of a particle initially at the origin, P (x , N = 0) = 6,,o, the joint Fourier
transform and generating function of the probability distribution becomes

1
P(k, z) -(1.3.4)

1 - zu(k) .

We can now reconstruct the original probability distribution by inverting
these transforms. When P(k , z) is expanded in a Taylor series in z, the in-
verse of the generating function is simply P (k, N) - u(k)N . Then the inverse
Fourier transform is

P (x , N) =
2 	

e'kx u(k) iv dk,
7r

(1.3.5)

where the integration is around the unit circle in the complex plane. To evaluate
the integral, we	 u(k) 	 (peik qe-th )N in a binomial series. This
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gives

	(N)	 ikon 	 ctic(N	 dk. (1.3.6)p e qp(x,N)= —7r e	 m )

The only term that survives the integration is the one in which all the phase
factors cancel. This is the term with in = (N 02 and this ultimately leads
to gives the classical binomial probability distribution of a discrete random
walk:

Ni
P(x, N) = 	 (N -21-1 ! (N ) 1

Finally, using Stirling's approximation, this binomial approaches the Gaussian
probability distribution in the long-time limit,

	

1	 e--(x-Pip)212NpqP(x, N) 	 (1.3.8)
27/ i'Srpar

In fact, a Gaussian distribution arises for any hopping process in which
the mean displacement (x) and the mean-square displacement (x 2 ) in a single
step of the walk is finite. This is the statement of the central-limit theorem
(Gnedenko and Kolmogorov (1954)). When (x) and (x 2 ) are both finite, u(k)
has the small-k series representation

u(k) = 1 ik(x) -  k2 (X 2 ) +

WM-422) k 	 0 .e 	 2

When this result for u(k) is substituted into Eq. (1.3.5), the main contribution
to the integral comes from the region k 0. We can perform the resulting
Gaussian integral by completing the square in the exponent; this leads to
a Gaussian form for the probability distribution of a general nonsingular
hopping process:

P(x, N) 	
1	 e	 -(x))2/21,1(T2). 	 (1.3.9)

,/2,7rN (x 2 )

This independence of the probability distribution on details of the single-
step hopping is a manifestation of the central-limit theorem. It is akin to the
universality hypothesis of critical phenomena in which short-range details
of a system do not affect large-scale properties [Stanley (1971)]. This same
rype of universality typifies random walks with short-range memory and/or
correlations. The only property that is relevant is that (x) and (x 2 ) are both

N-Fx 	 -x
p 2 q 2 (1.3.7)
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finite. All such processes can be universally described by diffusion in the
long-time limit.

As a complement to the above solution, which is based on P(k, z)
P(k, N) 	 P(x, N), we first invert the Fourier transform in Eq. (1.3.4) to
obtain the generating function for the occupation probability and then invert
the latter to obtain the probability distribution; that i& we follow P (k , z) —)•
P(x, z) 	 P(x, N). This is conceptually identical to, although technically
more complicated than, the inversion in the reverse order. However, there
are applications in which the generating function P(x, z) is indispensable
(see Chap. 3) and it is also useful to understand how to move easily between
generating functions, Laplace transforms, and real-time quantities. More on
this will be presented in Section 1.4.

Starting with P(k, z) in Eq. (1.3.4), the inverse Fourier transform is

1
	 e_9dk,

P(x ' z) — 27r L,	 z(pe'k
(1.3.10)

We may perform this integral by introducing the variable w =	 to recast
Eq. (1.3,10) as a contour around the unit circle in the complex plane. By
applying basic methods from residue calculus, the value of the integral is

1 	[  1 — 	— pqz2 lx1
P(x, z) = 	 (1.3.11)

	N il — 4pqz 2 	2zq

Finally, .we may invert this generating function formally by again applying
residue calculus to give the basic inversion formula

	1 	 P(x, z)
P(x, N) = 27ri 	 zN+1 

dz 
'	 (1.3.12)

where the clockwise contour encloses only the pole at the origin. We could
also attempt to compute the power-series representation of P(x, z) to arbitrary
order to extract the original probability distribution. Neither approach appears
to be elementary, however. This shows that the order of inverting the double
transform P(k, z) can be important: Here P(k, z) P(k, N) P(x, N) is
easy, whereas P(k, z) P(x . z) P(x, N) is not. This is a useful lesson
to keep in mind whenever one is dealing with combined Fourier—Laplace
transforms,

1.3.2. Discrete Space and Continuous Time

For this representation, we replace the discrete time N and rune increment
N	 N ] with continuous time t and infinitesimal increment t 	 t 8t
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and Taylor expand the resulting master equation (1.3.1) to first order in St.
We also rewrite the spatial argument as the integer n to emphasize its discrete
nature. These steps give

a P (ri
	  = w+ P(n —1, t) iv_P(n +1, t) — woP(n, t), 	 (1.3.13)

St
where w+ = p/St and w = 161 are the hopping rates to the right and to
the left, respectively, and w ax = 1/St is the total hopping rate from each site.
This hopping process satisfies detailed balance, as the total hopping rates to
a site equal the hopping rate from the same site.

By Fourier translorming, this master equation becomes an ordinary differ-
ential equation for the Fourier-transformed probability distribution

dP(k,
= (w+ e —th w_e' k — wo) P(k,

w(k) P(k ,	 (1.3.14)

For the initial condition P(n, t = 	 = 3„ . 0, the corresponding Fourier trans-
form is P(k, t = 0) = 1, and the solution to Eq. (1.3.14) is simply P(k, t) =
ew (k)r • To invert this Fourier transform, it is useful to separate w(k) into sym-
metric and antisymmetric components by defining w ± wo f Sw to give
w(k) = wo (cos k — 1)— 2i Sin sink, and then use the generating function rep-
resentations for the Bessel function [Ahramowitr. &. Stegun 0972)1,

cx,
ezco,,,k — 	 ikn

 ,

n=— co

z sin k 	 E (—iy eikn I(z),
—cx)

where /Az) is the modified Bessel function of the first kind of order n. After
some simple steps, we find 

oca  

P(k, = eik(i+in ) 14, (tvot) 	 (2i Wt (1.3.15)
f

By extracting the coefficient of e`n in this double series, we obtain

P(n, 	 = eT,ept 	 (—On nr In, (wot) In _t, (2i w t ), 	 (1.3.16)
co

In particular, for the symmetric nearest-neighbor random walk, whe re w
w_ = wo/2 1/2, this reduces to the much simpler form

dt

P(n, 	 = 	 1,(t). 	 (1.3.17)
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in this discrete-space continuous-time representation, the asymptotic be-
havior may be conveniently obtained in the limit oft -0. DC , but with n fixed.
For example, the probability that site n is occupied, as t oo, is

1  [	 2 -
P(n,t)=	 1 - 4n

	 1
	 ,] •	 (1.3.18)

.N/2t	 St

This gives the well-known result that the probability for a random walk
to remain at the origin vanishes as t -1 /2 . However, this discrete-space and
continuous-time representation is awkward for determining the Gaussian
scaling behavior of occupation probability, in which n and t both diverge
but n2 / t remains constant. For this limit, the continuum formulation is much
more appropriate.

To determine the probability distribution in this interesting scaling limit,
we introduce the Laplace transform of the probability distribution P(n, s) =
focc'	 P(n, 0 di and for simplicity consider the symmetric random walk.
Applying this Laplace transform to master equation (1.3.13) then gives

dt e't [ a P(n't)1	
1

= -
2
P (n + 0 + -P(n - 1,0 -	 0].

at
This Laplace transform reduces the master equation to the discrete recursion
formula

1	 1
sP(n, ․)-	 t = = -

2 
P(n + 1, s) 

2
-P(n - 1, - P(n, s).

(1.3.19)

For n ai we have PO, s) = afP(n + 1, s) P(n - 1, .0], with a =
112(s + 1). 'We solve this difference equation by assuming the exponential
solution P(n, s) AX" for n > O• For the given initial condition, the solution
is symmetric in n; hence P(n, s) = AA' for n < 0. Substituting this form
into the recursion for P(n, s) gives a quadratic characteristic equation for A
whose solution is A = (1 ±	 - 4a 2)/2a. For all s > 0, A are both real
and positive, with	 > and A_ < 1. For regularity at n = co, we must
reject the solution that grows exponentially with n, thus giving Pi., = AA" .
Finally, we obtain the constant A from the n = 0 boundary master equation:

s P(0, s) - 1 = -
1 
P(1, + -1 

P(-1, s) - P(0, ․ )
2

	

= P(1, - P(0, s).	 (1.3.20)

I rc

The -1 on the left-hand side arises from the initial condition, and the sec-
ond equality follows by spatial symmetry. Substituting P(n, s) = AA." into
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Eq. (1.320) gives A, from which we finally obtain

P(n, s) - 	 1
1
	A.	 (1.3.21)

This Laplace transform diverges at s = 0; consequently, we may easily
obtain the interesting asymptotic, behavior by considering the limiting form
of P(n, s) as s 0 limit. Because A_ 1 - i/27s as ,c 0, we find

(1 — .8[27,yr
P(n, s)

s
eTM

4s7

We can now compute the inverse Laplace transform P(n, =
o-Floo P(n, s)est ds by elementary means by using the integration variable

u = .. This immediately leads to the Gaussian probability distribution
quoted in Eq. (1.3.9) for the case (x) = 0 and (x 2 ) 	 1.

1.3.3. Continuous Space and Time

Filially, consider master equation (1.3.1) in both continuous time and space.
By expanding this equation in a Taylor series to lowest nonvanishing order -
second order in space x and first order in time t - we obtain the fundamental
convection-diffusion equation,

ac(x,t) 	 ac(x,t) 	 c(x
	 = D 	

0 	
(1.3.23)at 	 ax	 ax

for the particle concentration c(x, t). This should be viewed as the continuum
analog of the occupation probability of the random walk; we will therefore use
c(x, 0 and P(x, t) interchangeably. Here v (p - q)6x131 is the bias velocity
and D = 45x 2/26t is the diffusion coefficient. For the symmetric random walk,
the probability distribution obeys the simpler diffusion equation

roc 0 c,
- 

D a
2c(x, t)

at 	 a x
(1.3.24)

Note that in the convection-diffusion equation, the factor v f D diverges as
113x in the continuum limit. Therefore the convective term aciax invariably
dominates over the diffusion term 82ciax 2 . To construct a nonpathological
continuum limit, the bias p - q must be proportional to 3 x as 6x 0 so that
both the first- and the second-order spatial derivative terms are simultaneously
finite. For the diffusion equation, we obtain a nonsingular continuum limit

(1.3.22)
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merely by ensuring that the ratio 3x 2 /St remains finite as both 8x and St
approach zero. Roughly speaking, any stochastic hopping process in which
the distribution of step lengths is well behaved has a continuum description in
terms of the convection-diffusion or the diffusion equation. Much more about
this relation between discrete hopping processes and the continuum can be
found, for example, in Gardiner (] 985), Weiss (1994), or van Kampen (1997).

Several basic approaches are now given for solving the diffusion and the
convection-diffusion equations.

13.3.1. Scaling Solution

Scaling provides a relatively cheap but general approach for solving wide
classes of partial differentia] equations that involve diverging characteris-
tic scales, such as coarsening, aggregation, fragmentation, and many other
nonequilibtium processes [see, e.g., Lifshitz Slyozov (1961), Ernst (1985),
and Cheng Redner (1990) for examples of each]. For the diffusion equation,
the scaling solution is based on the observation that there is a single length
scale that characterizes the particle displacement. Consequently, the proba-
bility density is not a function of x and t separately, but rather, is a function of
the scaling variable xi X(t), where X (t) is the characteristic length scale
of the spatial spread of the probability distribution. We may then separate the
dependences on u and t to give two single-variable equations - one for the
time dependence and another for the functional form of the probability distri-
bution. For the convection-diffusion equation, two length scales are needed
to characterize the probability distribution, and, although a scaling approach
is still tractable, it no longer has the same degree of simplicity.

The scalp ansatz for the concentration in the diffusion equation is

1
tc(x, t) = x(	 f[xpoo].
)

(L3.25)

The prefactor I / X (0 ensures that the spatial integral, of c(x, t) is normalized,
fc(x t) dx = ], as is evident by dimensional analysis, and the function f
encodes the dependence on the scaled distance u = xf X(t). Substituting this
ansatz into the diffusion equation gives, after sonic elementary algebra,

(1.3.26)X(t)X(t) = -D nu)
f (u) u (11)'

where the prime denotes differentiation with respect to u and the overdot
denotes the time derivative. Because the left-hand side is a function of time
only whereas the right-hand side is a function of a only,both sides must equal
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a constant. The scaling ansatz thus leads to variable separation. Strikingly,
the value of the separation constant drops out of the solution to the diffu-
sion equation. However, in more complex situations, such as aggregation and
coarsening, the separation constant plays an essential role in characterizing
the solution, and additional physical considerations must be imposed to de-
termine the solution completely. These are beyond the scope of the present
discussion.

Solving for the time dependence gives XX = A, or X(0 2 = 2Ar. When
this is used in Eq. (1.3.26), the scaling function satisfies

A
f"/ = D (f + 	 - —D (4) 1 .

Integrating once gives f1 = -AufID const, but the symmetry condition
= 0 at u = 0, which corresponds to the random walk starting at the ori-

gin, means that the constant is zero. Integrating once again gives the scaling
function

.f 	 (0)e-Au212D

where the prefactor f (0) is most easily determined by invoking normal] zation.
With u = x1X(1), the final result for the concentration is

c(x, - 	 e -t-214Dt 	 (1.3.27)t) 
-,./47rDt

where, as advertised, the separation constant A drops out of this solution. Note
that for D = 1/2 this solution agrees with expression (1.3.9), with (x 2 ) =
and N

1.3.3.2. Fourier Transform Solution

Here we solve the convection-diffusion equation by first introducing the
Fourier transform

c(k, t) = f e(x , etkx d x

to simplify the convection-diffusion equation to

e(k, t) = (ikv - Dk2)c(k, t). 	 (1.3.28)

The solution is

c(k t) = c(k , 13)e (1" Dk ! )?

= e (My— Dic 2 )t 	 ( 1.3.29)
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for the initial condition c(x, t 0) = 6(x). We then obtain the probability
distribution by the inverse Fourier transform

c(x , 
t) =

27r f_cc
e (rkv —Dk 2 )r —ikx dk.

We may perform this integral by completing the square in the exponential,
and the final result is the Gaussian probability distribution

c(x, t) = 	 1
	e -(x-vt)214Dt 	 (1.3.30)

4/1,.rpt

1.3.3.3. Laplace Transform Solution

An alternative approach is to first perform a Laplace transform in the time
domain. For the convection-diffusion equation, this yields the ordinary dif-
ferential equation

sc(x, s) - 6 (x) vc(x , s) = Dc"(x, s), 	 (1.3.31)

where the delta function again reflects the initial condition of a particle at
the origin at t = 0. This equation may be solved separately in the half-spaces
x > 0 and x < 0. In each subdomain Eq. (1.3.31) reduces to a homogeneous
constant-coefficient differential equation that has exponential solutions in
x. The corresponding solution for the entire line has the form c+ (x, s) =
A +e-°-- -" for x > 0 and c_(x, s) = A_e" 1-x for x < 0, where a±
(v f -‘,/v 2 4Ds)/2D are the roots of the characteristic polynomial. The
complemeptary divergent term in each of these half-space solutions has been
discardedhen these two solutions are joined at the origin, they yield the
global sohon. The appropriate joining conditions are continuity of c(x, s)
at x = 0, and a discontinuity in (aciax) at x = 0 whose magnitude is deter-
mined by integrating Eq. (1.3.31) over an infinitesimal domain that includes
the origin.

The continuity condition trivially gives A + = A_ A, and the condition
for the discontinuity in c(x, s) is

	

D(c'+ IA=0 -	 =0) = -1.

This gives A = I Wv 2 4Ds. Thus the Laplace transform of the probability
distribution is

c+(x, s) =  	 I 	 (1.3.32)
's V 2 + 4Ds

For zero bias, this coincides with Eq. (1.3.22) and thus recovers the Gaussian
probability distribution.

1	 CO



1.4. Relation between Laplace Transforms and Real-Time Quantities 17

1.3.3.4. Fourier-Laplace Transform Solution

Perhaps the simplest approach for solving the convection-diffusion equation
is to apply the combined Fourier-Laplace transform

cx)
c(k, s) = 	 dx e lkx 	dt c(x , t)e' r

-Do 	 0
to recast the differential equation into the purely algebraic equation
,sc(k, s) —1 = —(ivk Dk 2)c(k , s). The solution to the latter is

c(k, s) — 	1
	

(1.3.33)
s + ivk + Dk2.

Performing the requisite inverse transforms, we again recover the Gaussian
probability distribution as a function of space and time.

In summary, all of the representations of the probability distribution for
the convection-diffusion equation are interrelated and equivalent, as repre-
sented graphically below. The nature of the problem usually dictates which
representation is best to use in solving a specific problem.

— ❑ef4D1
P(x. t) — 	

41 .1Dt
t)=e—(ikv + Dit)

FouneY 	 ,ct , e--> I)

Laplace

x, s) <	
env+ 	 4Ds) 14/2D

nt, = 	
142 + 4Ds

1.4. Relation between Laplace Transforms and Real-Time Quantities
In first-passage phenomena, we typically seek the asymptotic behavior of
a time-dependent quantity when only its generating function or its Laplace
transform is readily available. A typical example is a function F (t) whose gen-
erating function has the form F(z) — (1 — z) 4-1 , with p. < 1 as z 	 1 from
below, We will show that the corresponding time dependence is F(t)
as t 	 oc. Although there are well-established and rigorous methods avail-
able. for inverting such transforms [see, e.g., Titschmarsh (1945), Hardy
(1947), and the discussion in Weiss (1994) for specific applications to random
walks], if we are interested in long-time properties only, then basic asymp-
totic features can be gained through simple. and intuitively appealing means.
Although lacking in rigor, they provide the correct behavior for all cases

P(k, s) 	
+
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of physical interest. The most useful of these methods are outlined in this
section.

Let us first determine the long-time behavior of a function F(t) when only
the associated generating function F(z) = t°0 F(t)z' is available. There are
two fundamentally different cases: (a) E ic°0 F (t) diverges or (b) E t' o F (t)
converges.

We relate the generating function F(z) to F(t) by the following steps:

C)

F(z ) = E F(t)z`
=1)

	

F (t)e- 	/z) dt

	f F( t ) dt, 	 (1.4.1)

with t* = Dri(1 /z)] -1 . These simple algebraic steps involve several important
simplifications and approximations that we can justify as follows:

• Converting the sum to an integral. In many cases of relevance to first-
passage phenomena, F	 t t' for t	 Do but rapidly goes to zero
for I 0. Further, it is usually only the long-time behavior of F(t)
that is readily obtainable in the continuum limit. If we were to use the
continuum expression for F(t) in the integral for all times, a spurious
singularity could arise from the contribution to the integral at short

-times. We eliminate this unphysical singularity by replacing the lower
limit kvith a value of the order of 1. Because asymptotic behavior is
unaffected by this detail, we often leave the lower limit as indefinite
with the understanding that it is of the order of 1.

• From the second line of Eq. (1.4.1), we see that F(z) is essentially the
Laplace transform of F(t) with A = lri(1 /z). Because the s —› 0 limit
of the Laplace transform corresponds to long-time limit of F(t), we
immediately infer that long-time behavior may also be obtained from
the limit z	 I from below in the generating function.

• Sharp cutoff. In the last step, we replace the exponential cutoff in the
integral, with characteristic lifetime t' = [in(' /z)] - I , with a step func-
tion at t*. Although this crude approximation introduces numerical er-
rors of the order of 1, we shall see that the essential asymptotic behavior
is preserved when E t':_ o F(t) diverges.

We now use the approach ofEq. (1 .4.1) to determine the asymptotic relation
between F (t) and F(z), considering separately the two fundamental cases in
which E t'to F(t) diverges and in which it converges. In the former case, it is



..%/1 — z2

y taking the limit z	 1 from below, we obtain

1
P(x, z) — 	

[1 — 	 — Z2 1x1

(1.4.5)
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:;.̀. natural to use s = (1 — z) as the basic variable, since the generating function
':;-) diverges as z 	 1. Then	 [1n(1 /z)1 -1 — 1 Is for small s. Thus the basic

relation between F(t) and F(z) is simply
i/5

F(z)	 F(t)dt.

Now if F(t)	 with p. < 1 as t 	 oc, then F(z) diverges as
1 /s

F(z) 	 t-g di — sg -1 = (1 — zr -1

1 from below. in summary, the fundamental connection ig

F (t)	 F(z) — (1 —

(1.4.2)

(1.43)

(1.4.4)

As a useful illustration of the equivalence between the generating func-
Aion as z 1 from below and the Laplace transform, let us reconsider the

formidable-looking generating function of the one-dimensional random walk

[ 1 - .12(1 - 01 111 
,12(1 — z)

-x 
letting s = 1 — z.	 (1.4.6)

:,:*Thich reproduces the Laplace transform in approximation (1.3.22).
Parenthetically, another useful feature of the generating function is that

it can simplify integral relations between two functions of the generic form
P(t) = F(e). By introducing the generating functions for P and F,
we easily obtain the corresponding relation between the generating functions
P(z) = F(z)/(1 — z). In continuous time, the corresponding relation P(t) =

f F(i t) de translates to P(s) = F(s)Js for the Laplace transforms.
kr"

	

	 Finally, let us discuss the general connection between the time integral
of a function, T(t) j o F(t)dt, and the generating function F(z). For z =

r t

fr., : 1 — 1/t* with t* 	 oc, approximation (1 .4.2) become s

F(z = 1 — 1/t*) 	 F dt = .F(t*). (L4.7)

Thus a mere variable substitution provides an approximate, but asymptoti-
cally correct, algebraic relation between the generating function (or Laplace
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transform) and the time integral of the function itself. For this class of ex-
amples, there is no need to perform an integral to relate a function and its
Laplace transform.

Conversely, when Et" F(t) converges, the simplifications outlined in
Eq. (1.4.1) no longer apply and we must be more careful in constructing
the relation between F(t) and F(z). We again suppose that F(t) 	 as
t 	 Do, but now with p. > 1 so that F(z) is finite as z = 1. Then F(z) typi-
cally has the form F(z) = F(1) + pi (1 — z)a ' + • as z	 1, where p i is a
constant. To determine the exponent ct i in the first correction term, consider
the difference F(1) — F(z). We again use z 1 — s when z	 1, so that

CX)

F(1)— F(z) oc Et-4(1 — zt),

t	 - 	 dt,

f
00

t -4 di,
1/8

— (1 — 	 1. (1.4.8)

The exponential cutoff in the integrand has again been replaced with a sharp
cutoff at t = 1/s in the third line. We therefore infer the asymptotic behavior

F(z) 	 F(1) a_1(1 — z)4-1 +	 (11.4.9)

where the a 1 is ddetail-dependent constant.
Parallel results exist for the Laplace transform. For a generic power-law

form, F(t) riu, the Laplace transform F(s) has the small-s expansion:

F(s) 	 F(s 	 0) + (A l e A2e+1 	• -)	 (B i s l 	B2s 2 + • • •).

(1.4.10)

There are again several possibilities. When p. � 1, asymptotic behavior is
governed by the nonanalytic term. In this case, the exponent a = p. — 1.
Note also that when a is less than one, then the first moment and indeed
all positive integer moments of F(t) are divergent. This is reflected by the
fact that F(t) has the power-law tail 1 -11 with p, = a + I < 2. Additionally,
note that the zeroth-order term in Eq. (1.4.9) is 	 F(t) dt . Thus if F(t) is
the first-passage probability to a given point, F (s =	 is the probability of
eventually hitting this p9int.
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On the other hand, if all positive moments of F(t),

o to F(t) dt

(I) 	fo" F(t)dt
(1.4. 1 1}

exist, then F (s) in Eq. (1.4.10) contains only the Taylor series terms. These
generate the positive integer moments of F(t) by means of

F(8) _ 	 F(t)e'l dt
0

= 	 F(t) (I — st 
s2t2 

—
0

s2

= .F(OC) 	 (t) 	 r(12)— (1.4.12)

Thus the Laplace transform is a moment generating function, as it contains all
the positive integer moments of the probability distribution F(t). This is one
of the reasons why the Laplace transform is such a useful tool for first-passage
processes.

In summary, the small-s behavior of the Laplace transform, or, equivalently,
the z 1 behavior of the generating function, are sufficient to determine the
long-time behavior of the function itself. Because the transformed quantities
are usually easy to obtain by the solution of an appropriate boundary-value
problem, the asymptotic methods outlined here provide a simple route to
obtain long-time behavior.

1.5. Asymptotics of the First-Passage Probability
We now use the techniques of Section 1.4 to determine the time dependence
of the first-passage probability in terms of the generating function for the
occupation probability. For simplicity, consider an isotropic random walk
that starts at the origin. From the Gaussian probability distribution given in
Eq. (1.3.27), P(17 0, t) = (471- DO—d/2 in d dimensions. Then Eq. (1.4.1)
gives the corresponding generating function:

cc
P(0, z) 	 P(0, t) z` dt	 On- Dtr d i 2 z t dt.	 (1.5.1)

As discussed in Section 1.4, this integral has two fundamentally different
behaviors, depending on whether fc° P(0, t)dt diverges or converges. In the
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former case, we apply the last step in Eq. (1.4.1) to obtain

P(0, z) oc 	 (4n Dt) -1112 dt
{

Ad (e)1-6(12 = Ad (l — odl2-1

A2111 t * ---- —A2111(1 — z),

d < 2

d = 2
(1.5.2)

where the dimension-dependent prefactor Ad is of the order of 1 and does
not play any role in the asymptotic behavior,

For d > 2, the integral f' P(0, t)dt converges and we apply Eq. (1.4.8)
to compute the asymptotic behavior of P(0, 1) - P(0, z). By definition,
F(0, 1) - E t F(0, 0 	 1 - [P(0, 1)1 -1 . Further, Er F(0, t) is just the
eventual probability R. that a random walk reaches the origin, so that P (0 1)
(1 - 	 In the asymptotic limit z = 1 s, with s	 0, P(0, 1) - P(0, z)
may therefore be written as

P(0, 1) - P(0, 0 a E r d/2 (1 — zr),

	(1  _ od/2-- 1 . 	 (1.5.3)

Thus P(0, z) has the asymptotic behavior

(1 _ 70-1 Bd( -.0,d/2-1 +P(0, z)	 d > 2,	 (1.5.4)

where B d is another dimension-dependent constant of the order of 1. Using
these results in Eq. (1.2.3), we infer that the generating function for the first-
passage mobility has the asymptotic behaviors

whereas, for d > 1,

F(0, z)	 1 - 1/1	 z2 ,

1

d 	 1, (1.5.5)

1 - d < 2
Ad(1 - z)d/2-1 '

F(0, z) - 1

1
d -, 2 . (1.5.6)

+ A21n(1 - z)

it + Bd(1 - R)2(1 - z)" 12-1 , d > 2

From this generating function, we determine the time dependence of the
survival probability by approximation (1.4.7); that is,

t -*
F(0, z = 1 - 1 / t*) - i F(0, t)dt

=-- first-passage probability up to time t*

=_-_ T(t 4 ) = 1 - SW), 	 (1.5.7)
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where S(t) is the survival probability and T(t) is the complementary proba-
bility that the particle is trapped, that is, reaches the origin by time t. From
Eqs. (1.5.6) and (1.5.7) we thus find

1
d < 2

Adt 1—(/ /	 '

S(t) 1
d. 2 , (1.5.8)

A21nt'

(1 — R.) + Cd(1 — R,)2 1. 1--d/2, d > 2

where Cj is another d-dependent constant of the order of 1. Finally, the time
dependence of the first-passage probability may be obtained from the basic
relation 1 — S(t) f F(0, t)dt to give

t "!2 2, d < 2
as(t) . .F(0, t) --fit oc (1.5.9)1n2 

d 2
t'

t-d 12, d > 2

Equations (1.5.8) and (1.5.9) are the fundamental results of this section —
the asymptotic time dependences of the survival and the first-passage prob-
abilities. There are several important features that deserve emphasis. First,
asymptotic time dependence is determined by the spatial dimension only,
and not on any other properties of diffusive motion. Note, in particular, the
change in behavior as a function of spatial dimension. For d 2, the survival
probability S(t) ultimately decays to zero. This means that a random walk is
recurrent, that is, certain to eventually return to its starting point, and indeed
visit any site of an infinite lattice. Finally, because a random walk has no
memory, it is "renewed" every time a specific lattice site is reached. Thus
recurrence also implies that every site is visited infinitely often.

There is a simple physical basis for this efficient visitation of lattice sites.
After a time t, a random walk explores a roughly spherical domain of ra-
dius,0i. The total number of sites visited during this exploration is also
proportional to t. Consequently, in d dimensions, the density of visited sites
within this exploration sphere is p oc titd/2 CC t 1—d/2 . Because this diverges as
t CC for d < 2, a random walk visits each site within the sphere infinitely
often; this is termed compact exploration Lde Gentles (1983)]. Paradoxically,
although every site is visited with certainty, these visitations take forever
because the mean time to return to the origin, (t) = f t F(0, Odt, diverges
for all d < 2.

On the other hand, for d > 2, Eq. (1.5.8) predicts that there is a nonzero
probability for a diffusing particle to not return to its starting point. More
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generally, there is a nonzero probability for a random walk to miss most of
the lattice sites. This incomplete visitation follows from the density of visited
sites p within the exploration sphere tending to zero as t oo. Thus the
random-walk trajectory within this sphere is relatively 'transparent?' This
behavior is more commonly known as transient [Nilya (1921) and Feller
(1968)].

The distinction between recurrence and transience has important physical
implications. As a basic example, consider a diffusion-controlled reaction in
three dimensions. Because the trajectory of each diffusing reactant is trans-
parent, the probability for two molecules to meet is essentially independent
of their initial separation. This means that a molecule reacts with any other
reactant molecule in the system with almost equal probability. Such an egali-
tarian process corresponds to the mean-field limit. Conversely, for dimension
d < 2, nearby reactants are most likely to meet and this naturally induces
slow kinetics and spatial correlations (see Chap. 8).

For a biased random walk, first-passage characteristics are largely domi-
nated by the bias. For d > 1, a biased random walk visits only those lattice
sites within a narrow cone along the bias whose length is proportional to t
and whose width is proportional to t 1 / 2 . The density of visited sites within
this cone is therefore t/t 1 +(('-1)/2 tai-d)/2 . Thus a biased random walk is
transient for all d 1. For d 1 there is a trivial version of recurrence in
which each downstream site is visited with certainty, but only a finite number
of times.

1.6. Connection between First-Passage and Electrostatics

1.6.1. Background
The fundamental connection between the first-passage properties of diffu-
sion and electrostatics is now outlined. Basic questions of first passage in-
clude where a diffusing particle is absorbed on a boundary and when does
this absorption event occur. These are time-integrated attributes, obtained by
integration of a time-dependent observable over all time. For example, to
determine when a particle is absorbed, we should compute the first-passage
probability to the boundary and then integrate over all time to obtain the even-
tual hitting probability. However, it is more elegant to reverse the order of
calculation and first integrate the equation of motion over time and then com-
pute the outgoing flux at the boundary. This first step transforms the diffusion
equation to the simpler Laplace equation. Then, in computing the flux, the
exit probability is just the electric field at the boundary point. Thus there is



1.6. Connection between First-Passage and Electrostatics 	 25

a complete correspondence between a first-passage problem and an electro-
static problem in the same geometry. This mapping is simple yet powerful,
and can be adapted to compute related time-integrated properties, such as
the splitting probabilities and the moments of the exit time. Some of these
simplifications are also discussed in Gardiner (1985) and Risken (1988).

1.6.2. The Green's Function Formalism

Let us recall the conventional method to compute the first-passage proba-
bility of diffusion. Consider a diffusing particle that starts at Po within a
domain with boundary B. We compute the hitting probability to a point Fs
on this boundary by first solving for the Green's function for the diffusion
equation

ac(i: , t;7:0)

at DV2c(7, t; Fo), 	 (1.6.1)

with the initial condition c(F, 0; i:o) =_- 6(7— Fo ) and the absorbing bound-
ary condition c(F, t;FOIFEB = 0. This condition accounts for the fact that
once a particle reaches the boundary it leaves the system. Because the ini-
tial condition is invariably a single particle at 70 , we will typically not write
this argument in the Green's function. The outgoing flux at FB , APB , t), is
simply

s, = — D a-c(F 	(1.6.2)

where h is a unit outward normal at FB. Finally, the eventual hitting probability
at FB is

00

WO.
0

j(FB , O dt.	 (1.6.3)

In this direct approach, we first solve the diffusion equation, which has a
first derivative in time, and then effectively "undo" the differentiation by
integrating over all time to find the eventual hitting probability.

1.6.2.1. Hitting Probability

We now rederive this hitting probability by mapping the time-integrated dif-
fusive system to electrostatics, First we integrate Eq. (1.6.1) over all time to
give

c(77, t	 oc) — c(F, t	 0) 	 DV2Cei(r''), 	 (1,6.4)



26	 Firct-Pas,cage Fundamentals

where C0() = f c(?, t) dt is the time integral of the Green's function. (The
reason for including the subscript 0 will become apparent shortly.) We now
consider spatial domains for which eventual absorption is certain, that is,
c(P, t = cc) = 0. Additionally, at t 0 the Green's function just reduces to
the initial condition c(F, t 6V' — F0). Thus C0() obeys the Laplace
equation

Dv2e00) 70, (1.6.5)

with homogeneous Dirichlet boundary conditions. This defines an electro-
static system with a point charge of magnitude 1/(DS1d) at 70 (where Od is
the surface area of a d-dimensional unit sphere). The absorbing boundaries
in the diffusive system are equivalent to grounded conducting surfaces in
the corresponding electrostatic problem. More general initial conditions can
easily be considered by the linearity of the basic equations.

In terms of Co , the eventual hitting probability 8(F a) is given by

8(713).	 AFB, t)dt

—D
r 8c(F, t) 

dt

aco
—D

rah
(1.6.6)

On the other hand, from Eq. (1.6.5) this normal derivative is just the electric
field associated with the initial charge distribution. This leads to the following
fundamental condlusion:

• For a diffusiAg particle that is initially at i0 inside a domain with absorb-
ing boundary conditions, the eventual hitting probability to a boundary
point F8 equals the electric field at this same location when a point
charge of magnitude 1/(D d) is placed at F0 and the domain boundary
is grounded.

This simplifies the computation of the exit probability significantly, as it is
much easier to solve the time-independent Laplace equation rather than the
corresponding diffusion equation.

1.6.2.2. Hitting Time

This electrostatic formalism can be extended to integer moments of the mean
time to exit or hit the boundary. By definition, the nth moment of the exit
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time is
oo

(tn ) = 	 tn F(t)dt, 	 (1.6.7)
Jo

where F(t) is the first-passage probability to the boundary at time t. Here
we are again tacitly considering situations for which the particle is certain to
eventually reach the exit boundary. If (t I) F(t)dt < 1, as would occur
if we were considering the first passage to a subset of a composite boundary,
then the formulas given below need to be normalized in an obvious way by
dividing the moments by (t°) .

Using the fact that F(t) = —0S(t)1811, we integrate by parts to obtain

(ta) 	 — f 	
as(t)

t 
dt,

00

_tn S(t) + n 	 0-1 S(t)dt
o 

= n 	 tn-1 dt f c(F, t)di. 	 (1.6.8)

In the second line, the integrated term is trivially equal to zero at the lower
limit and equals zero at the upper limit if the system is finite and S(t)
faster than a power law as t	 Dc. In the last line, the integral is over the
domain volume. Note the important special case of n = 1 for which the mean
exit time is simply (t) 	 fo ° S(t)dt.

We now recast this derivation for (tn) as a time-independent problem by
reversing the order of the temporal and the spatial integrations at the outset.
First, we define the time-integrated moments of the probability distribution

ao
C(r) = 	 C , t n dt. 	 (1.6.9)

Ja
Then, from the last line of Eq. (1.6.8), the nth moment of the mean exit time
is just the time-independent expression

(tn ) = n 	 (1.6.10)

We now show that each of these integrated moments satisfies the Poisson
equation with an n-dependent source term. Consider

to 	
t	

= DV 2 C(F , t)] dt .

	 (1.6.11)

Integrating the left-hand side by parts, we find that the integrated term,
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tnc(F, rcr, vanishes, except for n = 0, where the lower limit coincides with
the initial condition. The remaining term, — n dt , is propor
tional to the time-integrated moment of order n — 1, The right-hand side is
just DV2C,(F). Therefore Cn (F) obeys the equation hierarchy

DV2C0(t —6(F — TO),

DV 2C1(F) —Co(r1),
DV 2C2(F) —2C i(F)

(1.6.12)

Thus each C,a is the electrostatic "potential" generated by the "charge" dis-
tribution C,_1, with (tn) = n v ct,_, (i'.) di:. This provides all moments of
the first-passage time in terms of an associated hierarchy of electrostatic
potentials.

1.6.3. Laplacian Formalism

Another useful version of the correspondence between diffusion and electro-
statics is based on encoding the initial condition as the spatial argument of
an electrostatic potential rather than as an initial condition. This Laplacian
approach gives the splitting probability for composite domain boundaries in a
natural fashion and also provides conditional hitting times, namely, the times
to eventually hit a specific subset of the boundary.

. 21 	1.6.3.1. Splitting Probabilities

For simplicity, we4tart with a symmetric nearest-neighbor random walk in
the finite interval [x_ x + 1 and then take the continuum limit after developing
the formalism. We define E._(x) as the probability for a particle, which starts
at x, to eventually hit x... without hitting x+ . The generalization to higher
dimensions and to more general boundaries follows by similar reasoning.
Pictorially, we obtain the eventual hitting probability ...(x) by summing the
probabilities for all paths that start at x and reach x_ without touching x.
(Fig. 1.4). A parallel statement holds for e+ (x). Thus

Egx) = EP19,00, 	 (1.6.13)
P±

where P (x) denotes the probability of a path from x to x+ that avoids XT . As
illustrated in Fig. 1.4, the sum over all such restricted paths can be decomposed
into the outcome after one step and the sum over all path remainders from the
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B_	 B+
	 B

+ B
	 B

X
	 = 2	 Xl x
	 2 

Ai\ANAC`" 

X X'

Fig. 1,4. Decomposition of random-walk paths from x to the absorbing subset B (the
point x_ ) into the outcome after one step and the remainder from x' to 8- The factors
1 /2 account for the probabilities associated with the first step of the decomposed paths.

intermediate point x ? to x±. This gives

	e± (x)	 p±(x (Sx) + 	
2
— T r± pc — ax)

p±

	[e+(x + 6x) + £l (x 	 — 6x)1. 	 (1.6.14)

By a simple rearrangement, this is equivalent to

	A ( 2 ) e x = 0, 	 (1.6.15)

where A (2) is the discrete second-difference operator, which is defined by
❑ (2) f (x) f (x — 6x) — 2 f (x) f (x 6x). Note the opposite sense ofthis
recursion formula compared with master equation Eq. (1.3 .1) for the probabil-
ity distribution. Here e f (x) is expressed in terms of output from x, whereas
in the master equation, the occupation probability at x is expressed in terms
of input to x.

The basic Laplace equation (1.6.15) is subject to the boundary conditions
e..,(x_). 1, e .4x+). 0, and correspondingly E+ (x...). 0, £ + (x+ ) =, 1. In
the continuum limit, Eq. (1.6.15) reduces to the one-dimensional Laplace
equation EUx) 0. For isotropic diffusion in d spatial dimensions, the cor-
responding equation is

	

V2E(F) = 0,	 (1.6.16)

	

subject to the boundary conditions e..,(L) 	 1 and E_.(F+ ) ,-- 0; that is,
1 on the exit subset of the absorbing boundary and e_ = 0 on the

complement of this boundary. These conditions are interchanged fore + .
The functions	 are harmonic because e(x) equals the average of

at neighboring points [Eq. (1.6.14)1; that is, e, is in "harmony" with its local
environment. This is a basic feature of solutions to the Laplace equation.
Because e± satisfies the Laplace equation, we can transcribe well-known
results from electrostatics to less familiar, but corresponding, first-passage
properties. This approach will be applied repeatedly in later chapters.

We can easily extend the Laplacian formalism to a general random-walk
process in which the probability of hopping from to 7' in a single step is
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The appropriate generalization of Eq. (1.6.14) is

e+(F),-- E 	 (F1), 	 (1.6.17)
T f

which, in the continuum limit, reduces to

if) (F)V26. ( 7 )	 - -'d'e±(F) ---- 0 ,	 (1.6.18)

where the local diffusion coefficient DV) is just the mean-square displace-
ment and the local velocity 17(F) is the mean displacement alter a single step
when starting from P in this hopping process. The existence of the continuum
limit requires that the range of the bopping is finite. This equation should be
solved subject again to the boundary condition of e 1 on the exit boundary
and e± 0 on the complement of the exit.

In summary, the bitting, or exit, probability coincides with the electrostatic
potential when the boundary conditions of the diffusive and the electrostatic
systems are the same. This statement applies for both continuum diffusion
and the discrete random walk. This approach can be extended in an obvious
way to more general hopping processes with both a spatially varying bias
and diffusion coefficient. The consequences of this simple equivalence are
powerful. As an example, consider a diffusing particle that is initially at ra-
dius ro exterior to a sphere of radius a centered at the origin in d dimensions.
By the electrostatic formalism, the probability that this particle eventually
hits the sphere is simply the electrostatic potential at r0 , E._(ro) (airo )d-2

Conversely,jf.a diffusing particle starts in the interior of a bounded domain,
it is physically obvious that the boundary is eventually reached. This means
that e(F) = 1 forarry interior point, This slso follows from the fact that
V2E(7-') = 0 within the domain, subject to the boundary condition E(F) = 1
on the boundary. The solution is clearly 6'( 7) = I for any interior point.
This corresponds to the well-known fact that the electrostatic potentisl in
the interior of a conductor is constant, or equivalently, the electric field
is zero.

1.6.3.2. Unconditional and Conditional Mean First-Passage Times

We now extend the Laplacian approach to determine the mean exit time
from a domain with composite boundaries. Here we distinguish between the
unconditional mean exit time, namely, the time for a particle to reach any point
on an absorbing boundary B, and the conditional mean exit time, namely, the
time for a particle to reach a specified subset of the absorbing boundary B_
without touching the complement boundary B+ = B — B_. This conditional
exit time is closely related to the splitting probability of Subsection 1.6.3.1.
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We again treat a symmetric random walk on the finite interval [x_,
the generalization to higher dimensions and to general hopping processes is
straightforward. Let the time increment between successive steps be St, and
let t(x) denote the mean time to exit at either boundary component when a
particle starts at x. This quantity is simply the time for each exit path times
the probability of the path, averaged over all particle trajectories. This leads
to the analog of Eq. (1.6.13):

t(x) = EPp(x)t,(.), 	 (1.6.19)

where tp (x) is the exit time of a specific path to the boundary that starts at x.
In analogy with Eq. (1.6.14), this mean exit time obeys the recursion

formula

t(x) = —

I 
Ift(x + 8x) + (St] + [t(x — 3x) + St]) ,	 (1.6.20)

with the boundary conditions t(x_ ) t(x+) = 0, which correspond to the exit
time being equal to zero if the particle starts at the boundary. This recursion
relation expresses the mean exit time starting at x in terms of the outcome
one step in the future, for which the initial walk can be viewed as restarting
at either x + 8x or at x — 8x, each with probability 1/2, but also with the
time incremented by (St. In the continuum limit, the Taylor expansion of this
recursion formula to lowest nonvanishing order yields the Poisson equation
Dt"(x) = —1. For diffusion in a d-dimensional domain with absorption on
the boundary B, the corresponding Poisson equation for the exit time is

DV2 t(i-') = —1,	 (1.6.21)

subject to the boundary condition t(t) = 0 for r- E B. This Poisson is often
termed the adjoin! equation for the mean exit, or mean first-passage, time.

These results can be extended to a general short-range hopping process with
single-step hopping probability N,Fi. In this case, the analog of Eq. (1.6.20)
is

E 	 (1.622)

which in the continuum limit, becomes the Poisson-like equation

DV2 t(1 - ) + ii(F) • 't(F) = —1.	 (1.6.23)

Note, in particular, that the determination of the mean exit time has been re-
cast as a time-independent electrostatic problem. As we shall see in the next
chapters, this device greatly simplifies the computation of the mean exit times
and also provides useful physical insights.
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Finally, we may extend this electrostatic formalism to the conditional exit
times in which we discriminate the exit time by which part of the boundary is
reached. Thus let t_ (x) be the conditional mean exit time for a random walk
that starts at x and exits at B. without hitting B. Similarly let t+(x) be the
conditional mean exit time for a random walk that starts at x and exits at B+

without hitting B_. By its definition, t_ (x) can be written as

t_(x) = 
E„  Pp (X) t p _(X) 	 E0_ P p-(x) t p (X)

	(1 .6.24)Ep P p _(X) 	 e _oc)

where the sum over paths p_ denotes only the allowed paths that start at x and
reach K., without touching By decomposing each path as the outcome
after one step and its remainder, and then applying Eq. (1.6.14), we may write

e_(x )t.- (x} 	_ [p p_(x- - 6x)(t p_(x _ 6x) ± 6t)
0 _

+ Pp_ (x Sx)(tp_(x Sx) Bt)]

1
= St _(x) + 

2
— te _(x — Sx)t_(x — Sx)

£_(x Sx)t_(x +Sx)]

St £_(x) +16. _(x)t_(x)+ s:
2C. 2 8 2 5_,a(Xx):_(X)]

In the crorinuum limit, this leads to a Poisson equation for the conditional
mean first-passage time (now written for general spatial dimension)

DV2 f e 	 — E _(T-') ,	 ( 1.6.26)

with D , 2(Br-) 2/26/ and subject to the boundary conditions e _(r7)t_o
0 both on	 (where t_ vanishes) and on B+ (where &_ vanishes). The
governing equations and boundary conditions for th () are entirely analo-
gous. Finally, if there is a bias in the hopping process, then Eq. (1.6.26) is
generalized to

Dine ± (F)t± (F)1 [e+ (i.:)4(1-:)] -e±o. 	 (16.27)

With this formalism, we can obtain eventual hitting probabilities and
mean hitting times (both unconditional and conditional) by solving time-
independent electrostatic boundary-value problems. Thus this electrostatic
connection will allow us to obtain subtle conditional first-passage properties
in a relatively simple mil-incr.

(1.625)
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1.7. Random Walks and Resistor Networks

1.7.1. introduction

In parallel with the connection between diffusive first-passage properties and
the Laplace and the Poisson equations of electrostatics, there is a deep relation
between first-passage properties of random walks and the discrete analog of
electrostatics. The latter is naturally expressed as the current-carrying prop-
erties of a suitably defined resistor network. This is the basis of an appealing
mapping between the first-passage characteristics of a random walk on a par-
ticular graph and the current-carrying properties of a resistor network whose
elements consist of the same graph. We shall show that the voltages at each
site and the overall network resistance are directly and simply related to the
exit probabilities of a corresponding random walk. Our discussion closely
follows that given in Doyle and Snell (1984).

1.7.2. The Basic Relation

To develop the resistor network connection, consider a discrete random walk
on a finite lattice graph with hopping between nearest-neighbor sites (see
Fig. 1.5). We divide the boundary points into two classes, B+ and B. As
usual, we are interested in the exit probabilities to B+ and to B._ as functions
of the initial position x of the random walk. As shown in Section 1.6, these
exit probabilities, .4.. (x), and E _(x), respectively, are governed by the discrete
Laplace equation A(2)e+ (x) = 0, subject to the boundary conditions =1
on B+ and E+ = 0 on R., and vice versa for E_.

This Laplace equation has a simple resistor network interpretation. The
basic connection is that if all the lattice bonds are viewed as resistors (not
necessarily identical), then Kirchhoff's laws for steady current flow in the

01)
Fig. 1.5. (a) A lattice graph with boundary sites ,13+ or B_. (13) Corresponding resistor
network in which each bond (with rectangle) is a t-E2 resistor. The sites in B± are all
fixed at potential V = t, and sites in B_ are all grounded.
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network are identical to the discrete Laplace equation for. Suppose that
the boundary sites in B+ are fixed at unit potential while the sites in B_
are grounded. The net current at each interior site i of the network must be
zero, as there is current input and output only at the boundary. This current
conservation condition is

E g,j (V, — V 1 ) = 0. ( 1.7.1 )

where g, 1 is the conductance of the bond between sites i and j, V, is the
voltage at site i, and the sum pans over the nearest neighbors j of site i.
Solving for Vi gives

E . gi V
VE d g“	 4	 j'

(1.7.2)

where the last step applies for a homogeneous network. Thus, in the steady
state, the voltage at each interior site equals the weighted average of the
voltages at the neighboring sites; that is, V; is a harmonic function with
respect to the weight function g1j . The voltage must also satisfy the boundary
conditions V = 1 for sites in B+ and V = 0 for sites in B.

We can also give a random-walk interpretation for the process defined
by Eq. (1.7.2). Consider a lattice random walk in which the probability of
hopping from site i to site j is P, = gv. Then the probability that
this walk eventually reaches B without first reaching B. is just given by
e+ (i) = E P P+ (I) [see Eqs. (1 .6.1 3)—(1.6. 1 5)1. Because both V, and e+(i)
are harmonic functions that satisfy the same houndary conditions, these two
functions are idei4tical. Thus we find the basic relation between random walks
and resistor networks:

• Let the boundary sets B and B_ in a resistor network be fixed at volt-
ages 1 and 0 respectively, with g,j the conductance of the bond between
sites i and j. Then the voltage at any interior site i is the same as the
probability for a random walk that starts at i to reach ir_4 before reaching
B_ when the hopping probability from i to j is Pu gu IEJ

1,7.3. Escape Probability, Resistance, and POlya's Theorem

An important extension of this relation between escape probability and site
voltages is to infinite networks. This provides a simple connection between
the recurrence/transience transition of random walks on a given network and
the electrical resistance of this same network. Suppose that the voltage V at
the boundary sites is set to one. Then the total current entering the network
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is given by

I = E(17 — Vi )g i )
i

= E (I — voi)+, > g+1 .
	 (1.7.3)

Here g+1 is the conductance between the positive terminal of the voltage
source and the neighboring sites i and 1)+ , — g+1 / Ei g+) . Because the
voltage 1.7) also equals the probability for the corresponding random walk to
reach B+ without reaching B-, the term V J P i j is just the probability that a
random walk starts at B+ , makes a single step to the sites j (with hopping
prohabilities P1j ), and then returns to B+ without reaching B_. We therefore
deduce that

1 E g1 1 E(1 — I 7 OP+ i
J 	 1

E g+i x (1 — return probability)
J

, E g + 1 x escape probability.	 (1.7.4)
i

Here "escape" means reaching the opposite terminal of the voltage source
without returning to the starting point.

On tbe otherb and, the input current and the voltage drop across tbe network
are simply related to the conductance G between the two boundary sets by
1 = GV = G. From this and Eq. (1.7.4) we obtain the fundamental result:

escape probability = P„„re = _
G

(1.7.5)
Z.-) g -Fi •

Perhaps the most interesting situation is when a current I is injected at a
single point of an infinite network with outflow at infinity (see Fig. 1.6). Then
the probability for a random walk that starts at this input point to escape,
that is, never return to its starting point, is simply proportional to the network
conductance G. It is amazing that a subtle feature of random walks is directly
related to currents and voltages in a resistor network!

One appeal of this connection is that network conductances can be com-
puted easily. In one dimension, the conductance of an infinitely long chain of
identical resistors is clearly zero. Thus Pecape = 0 or, equivalently, ?return =
1; that is, a random walk in one dimension is recurrent. In higher dimensions,
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Fig. i.6, DecompoksItion at a conducting medium into concentric sheds, each of which
consists of fixed-conductance btocks. A current I i injected at the origin and flows
radially outward through the medium.

the conductance between one point and infinity in an infinite resistor lattice
is a beautiful and more demanding problem that bas inspired many pbysicists
[see e.g., van der Pol &. Brernmer (1955), see also Atkinson & van Steenwijk
(1999) and Csertt (2000) for more recent pedagogical accountsj. However, for
merely determining the recurrence. or transience of a random walk, a crude
physical estimate suffices. The basic idea of this estimate is to replace the
discrete lattice with a continuum medium of constant conductivity. We. then
compute the conductance of the infinite system by further decomposing the
medium into a series of concentric shells of fixed thickness dr. A shell at
radius r can be regarded as a parallel array of rd-I volume elements, each of
which has a fixed conductance. The conductance of one such a shell is then
simply proportional to its surface area, and the overall resistance is the slim
of the shell resistance. This gives

'4'	 dr
R	 Rsheri(r) dr — d—i

for d < 2
(l.7,6)

CCI escape E g+j ) for d > 2
(1.7.7)

This provides a remarkably easy solution to the recurrencettransience tran-
sition of random walks. For d > 2., the conductance between a single point
and infinity in an infinite homogeneous resistor network is nonzero and is
simply related to the random-walk escape probability. For d < 2, the conduc-
tance to infinity is zero, essentially because there are an. insufficient number
of independent paths from the origin to infinity. Correspondingly, the escape
probability is zero and the random walk is recurrent. The case d 2 is more
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delicate because the integral in expression (1.7.6) diverges only logarithmi-
cally at the upper limit Nevertheless, the conductance to infinity slowly goes
to zero as the radius of the network diverges and the corresponding escape
probability is still zero.

1.8. Epilogue
The approaches outlined in this chapter provide the tools to determine where
a diffusing particle gets trapped on, or exits from, an absorbing boundary and
how long it takes for this event to occur. Often we can determine these prop-
erties most elegantly by mapping the diffusion problem onto a corresponding
electrostatic problem or onto a resistor network problem (in the case of ran-
dom walks). These mappings have powerful implications yet are generally
easy to apply. This use of the analogy to electrostatics underlies much of
the mathematical literature on first passage [see, e.g., Dynkin & Yushkevich
(1969), Spitzer (1976), and Salminen & Borodin (1996)1

Another related message that will become even more apparent in the next
chapter is that it is invariably much easier to deal with continuum diffu-
sion and its corresponding electrostatics, rather than with discrete random
walks. Although the generating function formalism is an elegant and pow-
erful way to treat the dynamics of random walks and their associated first-
passage properties [Montroll (1965), Montroll & Weiss (1965), and Weiss &
Rubin (1983)11, the corresponding properties are much easier to treat in the
continuum-diffusion approximation. Thus we will concentrate primarily on
diffusion and return to discrete random walks only for pedagogical complete-
ness or when random walks provide the most appropriate description of a
particular system. Our main goal in the following chapters is to elucidate the
first-passage properties of diffusion and its physical implications for a variety
of physically relevant systems, both by direct methods and by exploiting the
connections with electrostatics.


