
A linear bound on the Manickam-Miklós-Singhi
Conjecture

Alexey Pokrovskiy ∗

Department of Mathematics,
London School of Economics and Political Sciences,

London WC2A 2AE, UK
Email: a.pokrovskiy@lse.ac.uk

August 12, 2013

Abstract

Suppose that we have a set of numbers x1, . . . , xn which have nonnegative sum.
How many subsets of k numbers from {x1, . . . , xn} must have nonnegative sum?
Manickam, Miklós, and Singhi conjectured that for n ≥ 4k the answer is

(
n−1
k−1
)
. This

conjecture is known to hold when n is large compared to k. The best known bounds
are due to Alon, Huang, and Sudakov who proved the conjecture when n ≥ 33k2. In
this paper we improve this bound by showing that there is a constant C such that
the conjecture holds when n ≥ Ck .

1 Introduction

Suppose that we have a set of numbers x1, . . . , xn satisfying x1 + · · ·+ xn ≥ 0. How many
subsets A ⊂ {x1, . . . , xn} must satisfy

∑
a∈A a ≥ 0?

By choosing x1 = n−1 and x2 = · · · = xn = −1 we see that the answer to this question
can be at most 2n−1. In fact, this example has the minimal number of nonnegative sets.
Indeed, for any set A ⊂ {x1, . . . , xn} either A or {x1, . . . , xn} \ A must have nonnegative
sum, so there must always be at least 2n−1 nonnegative subsets in any set of numbers
{x1, . . . , xn} with nonnegative sum.

A more difficult problem arises if we count only subsets of fixed order. By again
considering the example when x1 = n − 1 and x2 = · · · = xn = −1 we see that there are
sets of n numbers with nonnegative sums which have only

(
n−1
k−1

)
nonnegative k-sums (sums
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of k distinct numbers). Manickam, Miklós, and Singhi conjectured that for n ≥ 4k this
assignment gives the least possible number of nonnegative k-sums.

Conjecture 1.1 (Manickam, Miklós, Singhi, [10, 11]). Suppose that n ≥ 4k, and we
have n real numbers x1, . . . , xn such that x1 + · · · + xn ≥ 0. Then, at least

(
n−1
k−1

)
subsets

A ⊂ {x1, . . . , xn} of order k satisfy
∑

a∈A a ≥ 0

Conjecture 1.1 appeared in [11] where it was phrased in terms of calculating invariants
of an association scheme known as the Johnson Scheme. In [10], Conjecture 1.1 was phrased
in the combinatorial form in which it is stated above.

A motivation for the bound “n ≥ 4k” is that for k ≥ 3 and n = 3k + 1 there exists an
assignment of values to x1, . . . , x3k+1 which results in less than

(
n−1
k−1

)
nonnegative k-sums.

Indeed, letting x1 = x2 = x3 = 2 − 3k and x4 = · · · = x3k+1 = 3 gives an assigment
satisfying x1 + · · · + x3k+1 = 0 but having

(
3k−2
k

)
nonnegative k-sums, which is less than(

3k
k−1

)
for k ≥ 3.

Conjecture 1.1 has been open for over two decades, and many partial results have been
proven. The conjecture has been proven for k ≤ 3 by Manickam [9] and independently by
Chiaselotti and Marino [4]. It has been proven whenever n ≡ 0 (mod k) by Manickam and
Singhi [11]. In addition several results have been proved establishing the conjecture when n
is large compared to k. Manickam and Miklós [10] showed that the conjecture holds when
n ≥ (k − 1)(kk + k2) + k holds. Tyomkyn [13] improved this bound to n ≥ k(4e log k)k ≈
eck log log k. Recently Alon, Huang, and Sudakov [1] showed that the conjecture holds when
n ≥ 33k2. The aim of this paper is to improve these bounds by showing that the conjecture
holds in a range when n is linear with respect to k.

Theorem 1.2. Suppose that n ≥ 1046k, and we have n real numbers x1, . . . , xn such that
x1 + · · ·+ xn ≥ 0. At least

(
n−1
k−1

)
subsets A ⊂ {x1, . . . , xn} of order k satisfy

∑
a∈A a ≥ 0

It is worth noticing at this point that there seem to be connections between the problem
and results mentioned so far in this paper, and the Erdős-Ko-Rado Theorem about inter-
secting families of sets. A family A of sets is said to be intersecting if any two members
of A intersect. The Erdős-Ko-Rado Theorem [3] says that for n ≥ 2k, any intersecting
family A of subsets of [n] of order k, must satisfy |A| ≤

(
n−1
k−1

)
. The extremal family of

sets in the Erdős-Ko-Rado Theorem is formed by considering the family of all k-sets which
contain a particular element of [n]. This is exactly the family A that we obtain from the
extremal case of the Manickam-Miklós-Singhi Conjecture if we let the members of A be the
nonnegative k-sums from x1, . . . , xn. In addition, many of the methods used to approach
Conjecture 1.1 are similar to proofs of the Erdős-Ko-Rado Theorem. The method we use
to prove Theorem 1.2 in this paper is inspired by Katona’s proof of the Erdős-Ko-Rado
Theorem in [6].

Suppose that we have a hypergraph H together with an assignment of real numbers to
the vertices of H given by f : V (H) → R. We can extend f to the powerset of V (H) by
letting f(A) =

∑
v∈A f(v) for every A ⊆ V (H). We say that an edge e ∈ E(H) is negative

if f(e) < 0, and e is nonnegative otherwise. We let e+f (H) be the number of nonnegative
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edges of H. Recall that the degree d(v) of a vertex v in a hypergraph H is the number
of edges containing v. A hypergraph H is d-regular if every vertex has degree d. The
minimum degree of a hypergraph H is δ(H) = minv∈V (H) d(v). The k-uniform complete

hypergraph on n vertices is denoted by K(k)
n .

The following observation is key to our proof of Theorem 1.2.

Lemma 1.3. Let H be a d-regular k-uniform hypergraph on n vertices. Suppose that
for every f : V (H) → R satisfying

∑
x∈V (H) f(x) ≥ 0 we have e+f (H) ≥ d. Then for

every f : V (K(k)
n ) → R satisfying

∑
x∈V (K(k)

n )
f(x) ≥ 0 we have e+f (K(k)

n ) ≥
(
n−1
k−1

)
(and so

Conjecture 1.1 holds for this particular n and k).

Lemma 1.3 is proved by an averaging technique similar to Katona’s proof of the Erdős-
Ko-Rado Theorem (see Section 2). This technique has already appeared in the context of
the Manickam-Miklós-Singhi Conjecture in [10] where it was used to prove the conjecture
when n ≥ (k − 1)(kk + k2) + k.

Lemma 1.3 shows that instead of proving the conjecture about the complete graph K(k)
n ,

it may be possible to find regular hypergraphs which satisfy the condition in Lemma 1.3
and hence deduce the conjecture. This motivates us to make the following definition.

Definition 1.4. A k-uniform hypergraph H has the MMS-property if for every f :
V (H)→ R satisfying

∑
x∈V (H) f(x) ≥ 0 we have e+(H) ≥ δ(H).

Conjecture 1.1 is equivalent to the statement that for n ≥ 4k the complete hyper-
graph on n vertices has the MMS-property. Lemma 1.3 shows that in order to prove
Conjecture 1.1 for particular n and k, it is sufficient to find one regular n-vertex k-uniform
hypergraph H with the MMS-property. This hypergraph H may be much sparser than the
complete hypergraph—allowing for very different proof techniques.

Perhaps the first two candidates one chooses for hypergraphs that may have the MMS-
property are matchings and tight cycles. The matchingMt,k is defined as the k-uniform hy-
pergraph consisting of tk vertices and t vertex disjoint edges. Notice thatMt,k is 1-regular.
The matchingMt,k always has the MMS-property—indeed we have that

∑
e∈E(Mt,k)

f(e) =∑
x∈Mt,k

f(x) ≥ 0, and so one of the edges of Mt,k is nonnegative. This observation was

used in [11] to prove Conjecture 1.1 whenever k divides n.
The tight cycle Cn,k is defined as the hypergraph with vertex set Zn and edges formed

by the intervals {i (mod n), i + 1 (mod n), . . . , i + k (mod n)} for i ∈ Zn. It turns out
that the tight cycles do not have the MMS-property when n 6≡ 0 (mod k). To see this for
example when k = 3 and n ≡ 1 (mod k), let f(x) = 50, 50, 50, −101, 50, 50, −101, 50,
50, −101 . . . for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . .

An interesting question, which we will return to in Section 6 is “which hypergraphs
have the MMS-property?”

The main result of this paper is showing that there exist k(k − 1)2-regular k-uniform
hypergraphs on n vertices which have the MMS-property, for all n ≥ 1046k.
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Theorem 1.5. For n ≥ 1046k, there are k(k−1)2-regular k-uniform hypergraphs on n ver-
tices, Hn,k, with the property that for every f : V (Hn,k)→ R satisfying

∑
x∈V (Hn,k) f(x) ≥ 0

we have e+(Hn,k) ≥ k(k − 1)2.

Combining Theorem 1.5 and Lemma 1.3 immediately implies Theorem 1.2.
Throughout this paper, we will use notation from Additive Combinatorics for sumsets

A + B = {a + b : a ∈ A, b ∈ B} and translates A + x = {a + x : a ∈ A}. For all standard
notation we refer to [2].

The structure of this paper is as follows. In Section 2 we prove Lemma 1.3. In Section 3,
we define the graphs Hn,k used in Theorem 1.5 and prove some of their basic properties. In
Section 4, we prove Theorem 1.5 with the weaker bound of n ≥ 14k4 in order to illustrate
the main ideas in the proof of Theorem 1.5. In Section 5 we prove Theorem 1.5. In
Section 6, we conclude by discussing the techniques used in this paper and whether they
could be used to prove Conjecture 1.1 in general.

2 Proof of the averaging lemma

Here we prove Lemma 1.3.

Proof. Suppose that we have a function f : {1, . . . , n} → R satisfying
∑

x∈{1,...,n} f(x) ≥ 0.

Consider a random permutation σ of {1, . . . , n}, chosen uniformly out of all permutations
of {1, . . . , n}. We define a function fσ : {1, . . . , n} → R given by fσ : x→ f(σ(x)). Clearly∑

x∈{1,...,n} fσ(x) ≥ 0. We will count E(e+fσ(H)) in two different ways. For an edge e ∈ K(k)
n ,

we have

P(σ(e) ∈ H) =
e(H)(
n
k

) =
d(
n−1
k−1

)
Therefore we have

E(e+fσ(H)) =
∑

e∈K(k)
n ,

f(e)≥0

P(σ(e) ∈ H) = e+(K())
n,k

d(
n−1
k−1

)
However, by the assumption of the lemma, E(e+fσ(H)) is at least d. This gives us

e+(K(k)
n ) ≥

(
n− 1

k − 1

)
.

3 Construction of the hypergraphs Hn,k

In this section we construct graphs Hn,k which satisfy Theorem 1.5. We also prove some
basic properties which the graphs Hn,k have.
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Define the clockwise interval between a and b ∈ Zn to be [a, b] = {a, a+ 1, . . . , b}. The
graph Hn,k has vertex set Zn. We define k-edges e(v, i, j) as follows:

e(v, i, j) = [v, v + i− 1] ∪ [v + i+ j, v + j + k − 1]

The edges of Hn,k are given by e(v, i, j) for v ∈ Zn and i, j ∈ {1, . . . , k − 1}. In other
words Hn,k consists of all the double intervals of order k, where the distance between the
two intervals is at most k − 1.

Notice that the graph Hn,k is indeed k(k − 1)2 regular.
In order to deal with the graphs Hn,k it will be convenient to assign a particular set

E(v) of O(k2) edges to each vertex v. First, for each vertex v in Hn,k and i, j ∈ [1, k − 1],
we will define a set of edges, E(v, i, j). Then E(v) will be a union of the sets E(v, i, j).

The definition of the sets E(v, i, j) is quite tedious. However the sets E(v, i, j) are
constructed to satisfy only a few properties. One property that we will need is that for
fixed, v, i, j certain intervals can be formed as disjoint unions of edges in E(v, i, j). See
Figures 1 – 4 for illustrations of the precise configurations that we will use. Another
property that we will need is that no edge e ∈ Hn,k is contained in too many of the sets
E(v, i, j). See Lemmas 3.1 and 3.2 for precise statements of these two properties.

Over the next four pages we define the sets E(v, i, j).
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Figure 1: The edges in E(v, i, j) when we have i + j ≥ k and i ≥ j.

If i+ j ≥ k and i ≥ j, then we let

E(v, i, j) = {e(v, i, j), e(v + k + j, i, i+ j − k),

e(v + k + i+ j, i+ j − k, 2k − 2i), e(v + i, j, k − i),
e(v + k + i+ 2j, k − i, 2k − i− j), e(v + i, j, 2k − i− j),
e(v + 3k − j, i, j), e(v + 3k − j + i, j, k − i),
e(v + i, i+ j − k, 2k − 2i), e(v + i+ j, k − i, 2k − i− j),
e(v + 2k, i, j), e(v + 2k + i, j, k − i)}.

6



Figure 2: The edges in E(v, i, j) when we have i + j ≥ k and j < i.

If i+ j ≥ k and j < i, then we let

E(v, i, j) = {e(v, i, j), e(v + k + j, j, i+ j − k),

e(v + k + 2j, i+ j − k, 2k − 2j), e(v + i, j, k − i),
e(v + k + i+ 2j, k − j, 2k − i− j),
e(v + i, j, 2k − i− j), e(v + 3k − j, i, j),
e(v + 3k − j + i, j, k − i), e(v, j, i+ j − k),

e(v + j, i+ j − k, 2k − 2j), e(v + i+ j, k − j, 2k − i− j),
e(v + 2k, i, j), e(v + 2k + i, j, k − i)}.
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Figure 3: The edges in E(v, i, j) when we have i + j < k and i is even.

If i+ j < k and i is even, then we let

E(v, i, j) = {e(v, i, j), e(v + k + j, k − i

2
, i+ j),

e(v + 2k + j − i

2
, i+ j, i), e(v, i+ j,

i

2
),

e(v + 2k + i+ 2j,
i

2
, k − i

2
), e(v + i, j +

i

2
, k − i− j),

e(v + 2k − j, k − i

2
, i+ j), e(v + 3k − j − i

2
, i+ j, i),

e(v + 3k + i,
i

2
, k − i

2
), e(v, k − i

2
, i+ j),

e(v + k − i

2
, i+ j, i), e(v + k + i+ j,

i

2
, k − i− j),

e(v + i, j, k − i), e(v + 2k, i, j), e(v + 2k + i, j, k − i)}.
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Figure 4: The edges in E(v, i, j) when we have i + j < k and i is odd.

If i+ j < k and i is odd, then we let

E(v, i, j) = {e(v, i, j), e(v + k + j, k − i− 1

2
, i+ j),

e(v + 2k + j − i− 1

2
, i+ j, i), e(v, i+ j,

i− 1

2
),

e(v + 2k + i+ 2j,
i− 1

2
, k − i− 1

2
), e(v + i, j +

i− 1

2
, k − i− j),

e(v + 2k − j, k − i− 1

2
, i+ j), e(v + 3k − j − i− 1

2
, i+ j, i),

e(v + 3k + i,
i− 1

2
, k − i− 1

2
), e(v, k − i− 1

2
, i+ j),

e(v + k − i− 1

2
, i+ j, i), e(v + k + i+ j,

i− 1

2
, k − i− j),

e(v + i, j, k − i), e(v + 2k, i, j), e(v + 2k + i, j, k − i)}.

We define E−(v, i, j) to be the set of edges corresponding to edges in E(v, i, j), but going
anticlockwise (i.e. E−(v, i, j) = {{x1, . . . , xk} : {v− (x1−v), . . . , v− (xk−v)} ∈ E(v, i, j)).
For each vertex v, we let

E(v) =
⋃

i,j∈[1,k−1]

E(v, i, j) ∪ E−(v, i, j).

Notice that from the definition of E(v, i, j), we certainly have E(v, i, j) ≤ 15 for every
i, j ∈ [1, k − 1], which implies that |E(v)| ≤ 15(k − 1)2. Also, since e(v, i, j) ∈ E(v) for
every i, j ∈ [1, k − 1], we have that E(v) ≥ (k − 1)2. Therefore, we have |E(v)| = Θ(k2).

There are only two features of the sets E(v, i, j) that will be needed in the proof of
Theorem 1.5. One is that sequences of edges similar to the ones in Figures 1 – 4 exist in
E(v, i, j). This allows us to prove the following lemma.
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Lemma 3.1. Suppose that i, j ∈ [1, k− 1] and all the edges in E(v, i, j) are negative. The
following hold.

(i) f([v, v + 2k − 1]) < 0.

(ii) f([v, v + 3k − 1]) < 0.

(iii) f([v, v + 4k − 1]) < 0.

(iv) f([v + i, v + i+ j − 1]) < 0 =⇒ f([v, v + 4k + j − 1]) < 0.

(v) f([v + i, v + i+ j − 1]) ≥ 0 =⇒ f([v, v + 5k − j − 1]) < 0.

Proof. Figures 1 – 4 illustrates the constructions that are used in the proof of this lemma.

(i) This follows from the fact that e(v, i, j), e(v + i, j, k − i) ∈ E(v, i, j) and e(v, i, j) ∪
e(v + i, j, k − i) = [v, v + 2k − 1].

(ii) For i + j ≥ k and i ≥ j, this follows from the fact that e(v, i, i + j − k), e(v + i, i +
j − k, 2k − 2i), e(v + i+ j, k − i, 2k − i− j) ∈ E(v, i, j) and e(v, i, i+ j − k) ∪ e(v +
i, i+ j − k, 2k − 2i) ∪ e(v + i+ j, k − i, 2k − i− j) = [v, v + 3k − 1]. The other cases
are similar.

(iii) This follows from the fact that e(v, i, j), e(v+i, j, k−i), e(v+2k, i, j), e(v+2k+i, j, k−
i) ∈ E(v, i, j) and e(v, i, j)∪ e(v+ i, j, k− i)∪ e(v+ 2k, i, j)∪ e(v+ 2k+ i, j, k− i) =
[v, v + 4k − 1].

(iv) For i+ j ≥ k and i ≥ j, this follows from the fact that e(v, i, j), e(v+ k+ j, i, i+ j −
k), e(v+ k+ i+ j, i+ j− k, 2k− 2i), e(v+ k+ i+ 2j, k− i, 2k− i− j) ∈ E(v, i, j) and
e(v, i, j) ∪ e(v + k + j, i, i+ j − k) ∪ e(v + k + i+ j, i+ j − k, 2k − 2i) ∪ e(v + k + i+
2j, k − i, 2k − i− j) ∪ [v + i, v + i+ j − 1] = [v, v + 4k + j − 1]. The other cases are
similar.

(v) For i + j ≥ k and i ≥ j, this follows from the fact that e(v, i, j), e(v + i, j, k −
i), e(v+ i, j, 2k− i− j), e(v+ 3k− j, i, j), e(v+ 3k− j+ i, j, k− i) ∈ E(v, i, j) and also
e(v, i, j)∪e(v+i, j, k−i)∪e(v+i, j, 2k−i−j)∪e(v+3k−j, i, j)∪e(v+3k−j+i, j, k−i) =
[v, v + 5k − j − 1] and e(v + i, j, k − i) ∩ e(v + i, j, 2k − i− j) = [v + i, v + i+ j − 1].
The other cases are similar.

The other feature of the sets E(v, i, j) that we need is that no edge is contained in too
many of the sets E(v, i, j). This is quantified in the following lemma. For the duration of
this paper, we fix the constant C1 = 110.

Lemma 3.2. Let e be an edge in Hn,k. The edge e is contained in at most C1 of the sets
E(v, i, j) ∪ E−(v, i, j) for v ∈ V (Hn,k), and i, j ∈ [1, k − 1].
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Proof. Notice that there are 55 edges mentioned in the definition of E(v, i, j). For t =
1, . . . , 55, let F t(v, i, j) be the singleton containing the tth edge in the definition of E(v, i, j),
i.e. F 1(v, i, j) = {e(v, i, j)}, F 2(v, i, j) = {e(v + k + j, i, i + j − k)}, . . . , F 55(v, i, j) =
{e(v + 2k + i, j, k − i)}. This definition is purely formal—for certain i and j, it is possible
that an edge in F t(v, i, j) is not an edge of Hn,k (for example F 3(v, i, j) contains the edge
e(v + k + i + j, i + j − k, 2k − 2i) which is not an edge of Hn,k if 2k − 2i ≥ k). Similarly
it is possible for F t(v, i, j) to be empty for certain i and j—for example F 52(v, i, j) should
contain e(v + k + i+ j, i−1

2
, k − i− j) which is not defined when i is even.

Clearly E(v, i, j) ⊆
⋃55
t=1 F

t(v, i, j) holds. Also, it is straightforward to check that for
fixed t, the sets F t(v, i, j) are all disjoint for v ∈ V (Hn,k), and i, j ∈ [1, k − 1]. Indeed for
fixed t, if we have e(u, a, b) ∈ F t(v, i, j), then it is always possible to work out v, i, and j
uniquely in terms of u, a, and b. These two facts, together with the Pigeonhole Principle
imply that the edge e can be contained in at most 55 of the sets E(v, i, j) for v ∈ V (Hn,k),
and i, j ∈ [1, k]. The lemma follows, since C1 ≥ 2 · 55 = 110.

A useful corollary of Lemma 3.2 is that an edge e can be contained in at most 110 of
the sets E(v) for v ∈ V (Hn,k).

4 Hypergraphs of order O(k4) with the MMS-property

In this section we prove Theorem 1.5, with a weaker bound of n ≥ 14k4. This proof has
many of the same ideas as the proof of Theorem 1.5, but is much shorter. We therefore
present it in order to illustrate the techniques that we will use in proving Theorem 1.5,
and hopefully aid the reader to understand that theorem.

Theorem 4.1. For n ≥ 14k4, and every function f : V (Hn,k) → R which satisfies∑
x∈V (Hn,k) f(x) ≥ 0 we have e+f (Hn,k) ≥ k(k − 1)2.

Proof. Suppose for the sake of contradiction that we have a function f : V (Hn,k) → R
satisfying

∑
x∈V (Hn,k) f(x) ≥ 0 such that we have e+f (Hn,k) < k(k − 1)2.

The proof of the theorem rests on two claims. The first of these says that any sufficiently
small interval I in Zn is contained in a negative interval of almost the same order as I.

Claim 4.2. Let I be an interval in Zn such that |I| ≤ n − 2k. Then there is an interval
J = [j1, jt] which satisfies the following:

(i) |J | ≤ |I|+ 2k.

(ii) I ⊆ J .

(iii) f(J) < 0.

Proof. Without loss of generality, we may assume that I is the interval [2k, 2km + l] for
some l ∈ [0, 2k− 1] and m ≤ n

2k
− 1. First we will exhibit 2k(k− 1)2 sets of vertex-disjoint

edges covering I.

11



For v ∈ {0 . . . 2k − 1}, i, j ∈ {1, . . . , k − 1} we let

D(v, i, j) =
m⋃
t=0

(
e(v + 2tk, i, j) ∪ e(v + 2tk + i, j, k − i)

)
Notice that an edge e(u, a, b) is contained only in the sets D(u (mod 2k), a, b) and D(u−
k+b (mod 2k), k−b, a). Therefore, since there are at less than k(k−1)2 nonnegative edges
in Hn,k, there are some v0,i0 and j0 for which the set D(v0, i0, j0) contains only negative
edges. Letting J =

⋃
D(v0, i0, j0) = [v0, v0 + 2k(m+ 1)] implies the claim.

The second claim that we need shows that any sufficiently large interval which does
not contain nonnegative edges in Hn,d must be negative.

Claim 4.3. Let I = [i1, im] be an interval in Zn which satisfies the following:

(i) |I| ≥ 12k.

(ii) There are no nonnegative edges of Hn,k contained in I.

We have that f(I) < 0.

Proof. Let R0 = {v ∈ I : f([0, v − 1]) < 0} and Rm = {v ∈ I : f([v,m]) < 0}. Let
Q− = {i ∈ [1, k − 1] : f([1, i]) < 0} and Q+ = {k − i ∈ [1, k − 1] : f([1, i]) ≥ 0}.

Since I contains only negative edges, parts (iv) and (v) of Lemma 3.1 imply that we have
that (Q− ∪Q+) + 4k ⊆ R0. Part (iii) of Lemma 3.1 implies that 4k ∈ R0. Then, parts (i)
and (ii) of Lemma 3.1 imply that (Q−∪Q+∪{0})+tk ⊆ R0 for any t ∈

{
6, 7, . . . ,

⌊
m
k

⌋
− 1
}

.
This implies that we have R0∩ [u, u+ k− 1] ≥ |Q−∪Q+∪{0}| for any u ∈ [6k,m− k− 1].

Notice that Q− ∪ Q+ contains at least one element from each of the sets {1, k −
1}, . . . ,

{⌊
k
2

⌋
,
⌈
k
2

⌉}
. This implies that for every u ∈ {6k, . . . ,m− k − 1} we have

|R0 ∩ [u, u+ k − 1]| ≥ |Q− ∪Q+ ∪ {0}| ≥
⌊
k

2

⌋
+ 1 >

k

2
.

Similarly we obtain |Rm ∩ [u, u + k − 1]| > k
2

for every u ∈ {k, . . . ,m− 7k}. By choosing
u = 6k, we have that |R0∩ [6k, 7k−1]|, |Rm∩ [6k, 7k−1]| > k

2
, and hence there exists some

i ∈ [6k, 7k−1] such that i ∈ R0, Rm hold. This gives us f([0,m]) = f([0, i])+f([i+1,m]) <
0, proving the claim.

We now prove the theorem. Suppose that every interval of order 14k in Hn,k contains
a nonnegative edge. Since there are at least n

14k
≥ k3 such disjoint intervals in Hn,k,

we have at least k3 nonnegative edges in Hn,k, contradicting our initial assumption that
e+f (Hn,k) < k(k − 1)2.

Suppose that there is an interval I of order 14k in Hn,k which contains only negative
edges. Applying Claim 4.2 to V (Hn,k\I) we obtain an interval J ⊆ I such that f(V (Hn,k)\
J) < 0 and |J | ≥ 12k. Applying Claim 4.3 to J we obtain that f(J) < 0. Therefore,
we have f(V (Hn,k)) = f(J) + f(V (Hn,k) \ J) < 0 contradicting the assumption that
f(V (Hn,k)) ≥ 0 in the theorem

12



It is not hard to see that Claim 4.3 would still be true if we allowed I to contain a
small number of nonnegative edges. The proof of Theorem 1.5 is similar to the proof of
Theorem 4.1 since it also consists of two main claims which are analogues of Claims 4.2
and 4.3. However the analogue of Claim 4.3 is much stronger since it allows for O(k3)
nonnegative edges to be contained in I. This is the main improvement in the proof of
Theorem 4.1 which is needed to obtain the linear bound which we have in Theorem 1.5.

5 Proof of Theorem 1.5

In this section we use ideas from Sections 3 and 4 in order to Theorem 1.5.

Proof of Theorem 1.5. For convenience, we fix the following constants for the duration of
the proof.

C0 = 1046 ε0 = 10−9

C1 = 110 ε1 = 10−18

C2 = 1016 ε2 = 10−6

C3 = 28 ε3 = 10−2

ε4 = 0.1
ε5 = 0.25

Let n ≥ C0k, and let Hn,k be the hypergraph defined in Section 3. Recall that for any
vertex v ∈ V (Hn,k), we have |E(v)| = Θ(k2).

Definition 5.1. We say that a vertex v in Hn,d is bad if at least ε0k
2 of the edges in E(v)

are nonnegative and good otherwise.

Let GH be the set of good vertices in Hn,k.
Suppose that we have a function f : V (Hn,k) → R such that we have e+f (Hn,k) <

k(k − 1)2. We will show that f(V (Hn,k)) < 0 holds. The proof of the theorem consists of
the following two claims.

Claim 5.2. Let I be an interval in Zn such that |I| ≤ n − 4C2k. There is an interval
J = [j1, jt] which satisfies the following:

(i) |J | ≤ |I|+ 4C2k.

(ii) I ⊆ J .

(iii) Both j1 − 1 and jt + 1 are good.

(iv) f(J) < 0.

Claim 5.3. Let I = [i1, im] be an interval in Zn which satisfies the following:

(i) C3k ≤ |I| ≤ (C3 + 4C2)k.

(ii) Both i1 and im are good.

13



(iii) Every subinterval of I of order k, contains at most ε1k bad vertices.

We have that f(I) < 0.

Once we have these two claims, the theorem follows easily:
First suppose that no intervals in Zn of order (C3 + 4C2)k satisfies condition (iii) of

Claim 5.3. This implies that there are at least ε1C0k/(C3 + 4C2) bad vertices in Hn,k.
Then Claim 3.2 together with the definition of “bad” implies that there are at least
ε0ε1C0k

3/C1(C3+4C2) nonnegative edges inHn,k. However, since ε0ε1C0/C1(C3+4C2) ≥ 1,
this contradicts our assumption that e+f (Hn,k) < k(k − 1)2.

Now, suppose that there is an interval I of order (C3 + 4C2)k which satisfies condi-
tion (iii) of Claim 5.3. Notice that all subintervals of I will also satisfy condition (iii) of
Claim 5.3. Applying Claim 5.2 to V (Hn,k)\I gives an interval J ⊆ I which satisfies all the
conditions of Claim 5.3 and also f(V (Hn,k)\J) < 0. Applying Claim 5.3 to J implies that
we also have f(J) < 0. We have

∑
v∈Hn,k f(v) = f(V (Hn,k) \ J) + f(J) < 0, contradicting

our initial assumption and proving the theorem.
It remains to prove Claims 5.2 and 5.3.

Proof of Claim 5.2. Without loss of generality, we may assume that I is the interval
[0, 2km + l] for some l ∈ [0, 2k − 1] and m < n

2k
− 2C2. We partition [1, 2k] into two

sets as follows.

Definition 5.4. For r ∈ [1, 2k] we say that r is unblocked if for every t ∈ [−C2,m+C2],
there are some i, j ∈ [1, k − 1] such that both of the edges e(2tk + r, i, j) and e(2tk + r +
i, j, k − i) are negative. We say that r is blocked otherwise.

Notice that if r is unblocked, then for every t1 ∈ [−C2, 0] and t2 ∈ [m,m+C2] we have
that f([2t1k + r, 2t2k + r − 1]) < 0. Therefore the claim holds unless either 2t1k + r − 1
or 2t2k + r is bad. Therefore, for each r which is unblocked, we can assume that all the
vertices in either {r − 1 − 2kC2, r − 1 − 2k(C2 − 1), . . . , r − 1} or {r + 2km, r + 2k(m +
1), . . . , r + 2k(m+ C2)} are bad.

To each r ∈ [1, 2k], we assign a set of nonnegative edges, P (r), as follows:

• If r is blocked, then there is some tr ∈ [−C2,m+C2], such that for every i, j ∈ [1, k−1]
one of the edges e(2trk+ r, i, j) or e(2trk+ r+ i, j, k− i) is nonnegative. We let P (r)
be the set of these edges. Notice that this ensures that |P (r)| ≥ (k− 1)2. Also, note
that for fixed a,b,c the P (r) can contain at most one edge of the form e(a+ 2tk, b, c)
for any t ∈ [−C2,m+ C2].

• If r is unblocked we know that all the vertices in either {r−1−2kC2, r−1−2k(C2−
1), . . . , r− 1} or {r+ 2km, r+ 2k(m+ 1), . . . , r+ 2k(m+C2)} are bad. Let P (r) be
the set of nonnegative edges in E(r− 1− 2kC2)∪E(r− 1− 2k(C2− 1))∪ · · · ∪E(r−
1) ∪ E(r + 2km) ∪ E(r + 2k(m + 1)) ∪ · · · ∪ E(r + 2k(m + C2)). Since at least C2

of these vertices are bad, Lemma 3.2 together with the Pigeonhole Principle implies
that |P (r)| ≥ C2ε0

C1
k2.
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Notice that an edge e can be in at most 2 of the sets P (r) for r blocked. This is because
it can be in at most one such set as an edge of the form “e(tk+ r, i, j)” and in at most one
such set and as an edge of the form “e(tk + r + i, j, k − i)”. Therefore we have:∣∣∣∣∣ ⋃

r blocked

P (r)

∣∣∣∣∣ ≥ ∑
r blocked

1

2
(k − 1)2 (1)

Lemma 3.2 implies that an edge e can be in at most C1 of the sets P (r) for r unblocked.
Therefore we have: ∣∣∣∣∣ ⋃

r unblocked

P (r)

∣∣∣∣∣ ≥ ∑
r unblocked

C2ε0
(C1)2

k2 (2)

We claim that for any s ∈ [1, 2k], we have∣∣∣∣∣∣
 ⋃
t∈[−C2,m+C2]

E(s+ 2tk)

 ∩( ⋃
r blocked

P (r)

)∣∣∣∣∣∣ ≤ 2|E(s)|. (3)

Indeed, otherwise the Pigeonhole Principle implies that for some r ∈ [1, 2k], t1, t2,
t3 ∈ [−C2,m+C2], and i, j ∈ [1, k − 1] we have three distinct edges e(r + 2t1k, i, j), e(r +

2t2k, i, j), and e(r + 2t3k, i, j) which are are all contained in
(⋃

t∈[−C2,m+C2]
E(s+ 2tk)

)
∩(⋃

r blocked P (r)
)

. This means that there are some r1, r2, and r3 ∈ [1, 2k] which are blocked,

such that e(r + 2tlk, i, j) ∈ P (rl) holds for l = 1, 2 and 3. Since each rl is blocked, all
the edges in P (rl) are of the form e(2t′k + rl, i

′, j′) or e(2t′k + rl + i′, j′, k − i′) for some
t′ ∈ [−C2,m+C2] and i′, j′ ∈ [1, k−1]. This, together with e(r+2tlk, i, j) ∈ P (rl), implies
that we have r1, r2, r3 ∈ {r, r−k+j}. This means that for some distinct l, l′ ∈ {1, 2, 3}, we
have rl = rl′ , which means that both e(r + 2tlk, i, j) and e(r + 2tl′k, i, j) are contained in
P (rl). However, this contradicts our definition of P (rl) for rl blocked which allowed only
one edge of the form e(r+ 2tk, i, j) to be in P (rl) for fixed r, i and j. This shows that (3)
holds for all s ∈ [1, 2k].

Recall that for all vertices s we have |E(s)| ≤ C1k
2. This, together with (3) implies

that we have

∣∣∣∣∣
( ⋃
s unblocked

P (s)

)
∩

( ⋃
r blocked

P (r)

)∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
 ⋃

s unblocked,
t∈[−C2,m+C2]

E(s+ 2tk)

 ∩
( ⋃
r blocked

P (r)

)∣∣∣∣∣∣∣∣
≤

∑
s unblocked

2|E(s)|

≤
∑

s unblocked

2C1k
2. (4)
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Putting (1), (2), and (4) together, we obtain:

e+f (Hn,k) ≥

∣∣∣∣∣ ⋃
r blocked

P (r)

∣∣∣∣∣+

∣∣∣∣∣ ⋃
r unblocked

P (r)

∣∣∣∣∣−
∣∣∣∣∣
( ⋃
s unblocked

P (s)

)
∩

( ⋃
r blocked

P (r)

)∣∣∣∣∣
≥

∑
r blocked

1

2
(k − 1)2 +

∑
r unblocked

C2ε0
(C1)2

k2 −
∑

s unblocked

2C1k
2

≥
∑

r blocked

1

2
(k − 1)2 +

∑
r unblocked

1

2
k2

≥ k(k − 1)2. (5)

The second last inequality follows from C2ε0
(C1)2
−2C1 ≥ 1

2
. The last inequality follows from

the fact that “the number of blocked vertices” + “the number of unblocked vertices” = 2k.
However (5) contradicts the assumption that there are less than k(k − 1)2 nonnegative
edges in Hn,k, proving the claim.

It remains to prove Claim 5.3.

Proof of Claim 5.3. Without loss of generality, we can assume that I = [0,m] for some
m ≤ (C3 + 4C2)k.

Recall that we are using notation from additive combinatorics for sumsets and trans-
lates. Except where otherwise stated, sumsets will lie in Z. For a set A ⊆ Z, define

A mod (k) = {b ∈ [0, k − 1] : b ≡ a mod (k) for some a ∈ A}.

For each vertex v, we define a set of vertices R(v) contained in I.

R(v) = {u ∈ [v + 1,m] : f([v, u− 1]) < 0 and u is good.}

R(v) has the following basic properties.

Claim 5.5. The following hold.

(i) If u > v and u ∈ R(v), we have R(u) ⊆ R(v).

(ii) Suppose that t ≥ 2 and we have a set X ⊆ R(v)∩ [w,w+ 2k− 1], for some vertex w.
There is a subset X ′ ⊆ X, such that we have |X ′| ≥ |X| − 2ε1kt and X ′+ t′k ⊆ R(v)
for every t′ ∈ {2, . . . , t}.

(iii) Suppose that we have X ⊆ [0, 2k − 1] such that X + t0k ⊆ R(0) for some t0. There
is a subset X ′ ⊆ X mod (k), such that X ′ + (t0 + 3)k ⊆ R(0) and |X ′| ≥ |X| − 6ε1k.

(iv) Suppose that we have X ⊆ [w,w+k−1]∩R(0) for some w. Then for any v ≥ w+2k,
we have we have |R(0) ∩ [v, v + k − 1]| ≥ |X| − 2ε1(v − w + 1)k.

Proof. (i) This part is immediate from the definition of R(v).
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(ii) First, we deal with the case when t = 2 or 3. The general case will follow by induction.

Suppose that we have x ∈ X. Since x is good, Lemma 3.2 implies that there are at
most ε0C1k

2 pairs i, j for which E(x, i, j) contains a nonnegative edge. Therefore,
since ε0C1 < 1, there must be at least one pair i0, j0 for which all the edges in
E(x, i0, j0) are nonnegative. Combining this with parts (i) and (ii) of Lemma 3.1
implies that we have

f([v, x+ 2k − 1]), f([v, x+ 3k − 1]) < 0. (6)

If t = 2 we let X ′ = X ∩ (GH − 2k). The identity 6 implies that X ′ + 2k ⊆ R(v).
By condition (iii) of Claim 5.3, we know that there are at most 2ε1k bad vertices in
[w + 2k, w + 4k − 1], which implies that |X ′| ≥ |X| − 2ε1k.

Similarly, if t = 3 we let X ′ = X ∩ (GH−2k)∩ (GH−3k). The identity 6 implies that
X ′ + 2k,X ′ + 3k ⊆ R(v). By condition (iii) of Claim 5.3, we know that there are at
most 3ε1k bad vertices in [w+ 2k, w+ 5k− 1], which implies that |X ′| ≥ |X| − 3ε1k.

Suppose that the claim holds for t = t0 for some t0 ≥ 3. We will show that it holds
for t = t0 + 1. We know that there is a set X ′ ⊆ X + t0k, such that we have |X ′| ≥
|X|−ε1kt0 and X ′+t′k ⊆ R(v) for t′ = 2, . . . , t0. Applying the t = 2 part of this claim
to X ′ + t0k we obtain a set X ′′ ⊆ X ′ such that |X ′′| ≥ |X ′| − ε1k ≥ |X| − ε1k(t0 + 1)
and also X ′′ + (t0 + 1)k ⊆ R(v). This proves the claim by induction.

(iii) Apply part (i) to X + t0 with t = 3 to obtain a set X ′ with |X ′| ≥ |X| − 3ε1k
and X ′ + t0k + {2k, 3k} ⊆ R(0). Let X ′′ = X ′ mod (k) to obtain a set satisfying
X ′′ ⊆ X mod (k) and |X ′′| ≥ |X mod (k)| − 3ε1k. We have that X ′′ + t0 + 3k =
(X ′ ∩ [0, k − 1] + t0 + 3k) ∪ (X ′ ∩ [k, 2k − 1] + t0 + 2k) ⊆ X ′ + t0 + {2k, 3k} ⊆ R(0).

(iv) Apply part (i) to X with t =
⌊
v−w
k

⌋
+ 1 to obtain a set X ′ with |X ′| ≥ |X| −

ε1
(⌊

v−w
k

⌋
+ 1
)
k and X ′ + t′k ⊆ R(0) for any t′ = 2, . . . ,

(⌊
v−w
k

⌋
+ 1
)
k. For any

x ∈ X ′, either x+
⌊
v−w
k

⌋
k or x+

(⌊
v−w
k

⌋
+ 1
)
k is in [v, v+k− 1]∩R0, which implies

that |R(0) ∩ [v, v + k − 1]| ≥ |X ′| ≥ |X| − ε1(v − w + 1)k.

To every vertex v ∈ I and ε > 0, we assign sets Q+
ε (v), Q−ε (v), Qε(v) ⊆ [1, k − 1] as

follows.

Q−ε (v) = {j ∈ [1, k − 1] : f([v + i, v + i+ j − 1]) < 0

for at least εk numbers i ∈ [1, k − 1]}
Q+
ε (v) = {k − j ∈ [1, k − 1] : f([v + i, v + i+ j − 1]) ≥ 0

for at least εk numbers i ∈ [1, k − 1]}
Qε(v) = Q−ε (v) ∪Q+

ε (v) ∪ {0}.

Qε(v) has the following basic properties.
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Claim 5.6. The following hold.

(i) For any r ∈ [0, k], we have Q2ε(v) ⊆ Qε(v − r) ∪Qε(v − r + k).

(ii) For ε ≤ 1
2
, x ∈ [1, k − 1], and v ∈ I either x or k − x is in Qε(v).

(iii) For ε ≤ 1
2

and v ∈ I, we have |Qε(v)| ≥ 1
2
k.

Proof. If j ∈ Q−2ε(v), then there are at least 2εk numbers i ∈ [1, k−1] for which f([v+i, v+
i+ j− 1]) < 0. For every r ∈ [0, k] the Pigeonhole Principle implies that there must either
be at least εk numbers i ∈ [1, k−1] for which f([v−r+i, v−r+i+j−1]) < 0 or at least εk
numbers i ∈ [1, k−1] for which f([v−r+k+ i, v−r+k+ i+j−1]) < 0. Therefore we have
Q−2ε(v) ⊆ Q−ε (v−r)∪Q−ε (v−r+k). Similarly we obtain Q+

2ε(v) ⊆ Q+
ε (v−r)∪Q+

ε (v−r+k)
which implies part (i).

Part (ii) is immediate from the definition of Qε(v). Part (iii) follows from (ii).

The following claim shows that for a good vertex v, there is a certain translate of Qε5(v)
which will nearly be contained in R(v).

Claim 5.7. For any good vertex v satisfying 0 ≤ v ≤ m− 5k, there is a Q′ ⊆ Qε5(v) such
that |Q′| ≥ |Qε5(v)| − ε2k and we have

Q′ + 4k + v ⊆ R(v).

Proof. Let T ⊆ [1, k−1] be the set of j ∈ [1, k−1] for which there are at least ε5k numbers
i ∈ [1, k − 1] such that E(v, i, j) contains a nonnegative edge. We have at least |T |ε5k
pairs i, j ∈ [1, k − 1] for which E(v, i, j) contains a nonnegative edge. Since v is good,
Lemma 3.2 implies that at most ε0C1k

2 of the sets E(v, i, j) contain nonnegative edges for
i, j ∈ [1, k − 1]. Therefore, we have |T |ε5k ≤ ε0C1k

2. We define the set Q′ as

Q′ =
(
(Q−ε5(v) \ T ) ∪ (Q+

ε5
(v) \ T ) ∪ {0}

)
∩ (GH − 4k).

First we prove Q′ + 4k + v ⊆ R(v). Suppose that we have j ∈ Q−ε5(v) \ T . From the
definition of T , there are at at more than k − 1− ε5k numbers i ∈ [1, k − 1] such that all
the edges in E(v, i, j) are negative. From the definition of Q−ε5(v), there are at least ε5k
numbers i ∈ [1, k − 1] such that [v + i, v + i + j − 1] is negative. Therefore, there is some
i ∈ [1, k − 1] such that all the edges in E(v, i, j) are negative and also [v + i, v + i+ j − 1]
is negative. Part (iv) of Lemma 3.1 implies that we have f(v, v + 4k + j − 1) < 0 and so
(Q−ε5(v) \ T + 4k + v) ∩GH ⊆ R(v). Similarly, using part (v) of Lemma 3.1, it is possible
to show that (Q+

ε5
(v) \ T + 4k + v) ∩GH ⊆ R(v). Finally, part (iii) of Lemma 3.1 implies

that we have ({0}+ 4k + v) ∩GH ⊆ R(v), and hence Q′ + 4k + v ⊆ R(v).
Now we prove |Qε5(v)| − ε2k. Since |T | ≤ ε0C1k/ε5, we must have

|Qε5(v) \ T | ≥ |Qε5(v)| − ε0C1

ε5
k. (7)

Condition (iii) of Claim 5.3 implies that

|Q′| ≥ |Qε5(v) \ T | − ε1k. (8)

Now, (7), (8) and ε2 ≥ ε0C1/ε5 + ε1 imply |Q′| ≥ |Qε5(v)| − ε2k, proving the claim.
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Definition 5.8. For S ⊆ A×B we define

A+S B = {a+ b : (a, b) ∈ S}.

The following claim shows that for a certain large set S, a translate of Qε5(0)+SQ2ε5(7k)
is contained in R(0).

Claim 5.9. There is a set S ⊆ Qε5(0)×Q2ε5(7k) such that |S| ≥ |Qε5(0)×Q2ε5(7k)|− ε23k2
and we have (

Qε5(0) +S Q2ε5(7k)
)

+ 13k ⊆ R(0).

Proof. For every good vertex v ∈ I, Claim 5.7 combined with part (ii) of Claim 5.5 implies
that there is a set Qv ⊆ Qε5(v) such that we have Qv + v + {6k, 7k} ⊆ R(v) and also

|Qv| ≥ |Qε5(v)| − (7ε1 + ε2)k. (9)

Now, part (i) of Claim 5.5 implies that we have⋃
v∈R(0)∩[6k,8k−1]

R(v) ⊆ R(0). (10)

Combining Qv + v + {6k, 7k} ⊆ R(v) with (10) implies that we have⋃
v∈(Q0+{6k,7k})

(Qv + v + {6k, 7k}) ⊆ R(0). (11)

We let

S = {(a, b) ∈ Qε5(0)×Q2ε5(7k) : a ∈ Q0 and b ∈ Qa+6k ∪Qa+7k}.

The identity (11) implies that we have

Qε5(0) +S Q2ε5(7k) + 13k = {a+ b : a ∈ Q0 and

b ∈ (Qa+6k ∪Qa+7k) ∩Q2ε5(7k)}+ 13k

⊆ {a+ b : a ∈ Q0 and b ∈ Qa+6k ∪Qa+7k}+ 13k

=

( ⋃
a∈Q0+6k

Qa + a+ 7k

)
∪

( ⋃
a∈Q0+7k

Qa + a+ 6k

)
⊆

⋃
a∈(Q0+{6k,7k})

(Qa + a+ {6k, 7k})

⊆ R(0).

Now we prove |S| ≥ |Qε5(0)×Q2ε5(7k)| − ε23k2. Notice that for each a ∈ [0, k− 1], part
(i) of Claim 5.6 implies

Q2ε5(7k) ⊆ Qε5(a+ 6k) ∪Qε5(a+ 7k) for all a ∈ Qε5(0). (12)
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The identity (12) combined with (9) and Qv ⊆ Qε5(v) implies that for all a ∈ [1, k− 1]
we have

|(Qa+6k ∪Qa+7k) ∩Q2ε5(7k)| ≥ |(Qε5(a+ 6k) ∪Qε5(a+ 7k)) ∩Q2ε5(7k)|
− 14ε1 + 2ε2)k

= |Q2ε5(7k)| − (14ε1 + 2ε2)k.

This gives us

|S| =
∑
a∈Q0

|(Qa+6k ∪Qa+7k) ∩Q2ε5(v)|

≥
∑
a∈Q0

(
|Q2ε5(7k)| − (14ε1 + 2ε2)k

)
≥
(
|Qε5(0)| − (7ε1 + ε2)k

)(
|Q2ε5(7k)| − (14ε1 + 2ε2)k

)
≥ |Qε5(0)×Q2ε5(7k)| − (21ε1 + 3ε2)k

2

≥ |Qε5(0)×Q2ε5(7k)| − ε23k2.

The second last inequality follows from |Qε5(0)|, |Q2ε5(7k)| ≤ k. The last inequality follows
from ε23 ≥ 21ε1 + 3ε2.

Claim 5.9 is combined with the following.

Claim 5.10. Suppose that A and B ⊆ Zk, and satisfy that for any x ∈ Zk , either x or
−x ∈ A and either x or −x ∈ B. Let S ⊆ A×B be a set satisfying |S| ≥ |A×B| − ε23k2.
We have

|A+S B| ≥
(

1

2
+ ε4

)
k.

When k is prime, Claim 5.10 follows from a theorem due to Lev [8], which itself is
closely related to a theorem due to Pollard [12]. In order to prove Claim 5.10, we will need
some results from additive combinatorics. We define

(A+B)i = {x ∈ Zk : x = a+ b for at least i distinct pairs (a, b) ∈ A×B}.

Notice that we have (A+B)i+1 ⊆ (A+B)i.
The proof of Claim 5.10 will use the following theorem due to Grynkiewicz.

Theorem 5.11 (Grynkiewicz, [5]). Let A and B ⊆ Zk and t ≤ k. We have one of the
following.

(i) The following holds.

t∑
i=1

|(A+B)i| ≥ t|A|+ t|B| − 2t2 + 1. (13)
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(ii) There are sets A′ ⊆ A and B′ ⊆ B such that |A \A′|+ |B \B′| ≤ t− 1 and we have
A′ +B′ = (A+B)t.

We define the stabiliser of a set X ∈ Zk to be Stab(X) = {y ∈ Zk : y + X = X}. We
use the following theorem due to Kneser.

Theorem 5.12 (Kneser, [7]). Let A and B ⊆ Zk and H the stabiliser of A+B in Zk. We
have

|A+B| ≥ |A+H|+ |B +H| − |H|. (14)

Sumsets in Claim 5.10, Theorem 5.11 and Theorem 5.12 are all in Zk.

Proof of Claim 5.10. Notice that since x or −x ∈ A,B, we must have |A|, |B| ≥ 1
2
k . Our

initial goal will be to show that we have

|(A+B)ε3k| ≥
(

1

2
+ ε4 + ε3

)
k. (15)

Apply Theorem 5.11 to A and B with t = 2ε3k. We split into two cases, depending on
which part of Theorem 5.11 holds.

(i) Suppose that (13) holds. Since we are working over Zk in this claim, we have |(A +
B)i| ≤ k. Combining this with (13) implies

2ε3k∑
i=ε3k

|(A+B)i| ≥ 2ε3k
(
|A|+ |B| − 4ε3k

)
+ 1−

ε3k−1∑
i=1

|(A+B)i|

≥ ε3k
(

2|A|+ 2|B| − (1 + 8ε3)k
)
.

This, together with (A+B)i+1 ⊆ (A+B)i implies that we have

|(A+B)ε3k| ≥ 2|A|+ 2|B| − (1 + 8ε3)k.

The identity (15) follows since we have |A|, |B| ≥ 1
2
k and 1− 8ε3 ≥ 1/2 + ε4 + ε3.

(ii) Suppose that we have two sets A′ and B′ as in part (ii) of Theorem 5.11. Apply
Theorem 5.12 to the sets A′ and B′.

Note that |A \A′|+ |B \B′| ≤ t− 1 together with (14) and |A|, |B| ≥ 1
2
k implies that

we have

|(A+B)ε3k| ≥ |(A+B)2ε3k|
= |A′ +B′|
≥ |A′ + Stab(A′ +B′)|+ |B′ + Stab(A′ +B′)| − |Stab(A′ +B′)| (16)

≥ |A|+ |B| − |Stab(A′ +B′)| − 2ε3k

≥ (1− 2ε3)k − |Stab(A′ +B′)|. (17)
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If |Stab(A′ + B′)| ≤ 1
3
k, then (15) follows (17) combined with 1 − 2ε3 − 1/3 ≥

1/2 + ε4 + ε3.

Otherwise, Lagrange’s Theorem implies that Stab(A′+B′) is either all of Zk or that k
is even and Stab(A′ + B′) is the set of even elements of Zk. If Stab(A′ + B′) = Zk
holds, then we have A′+Stab(A′+B′) = B′+Stab(A′+B′) = Zk. Substituting this
into (16) implies that we have |(A+B)ε3k| = k and so (15) holds.

Suppose that Stab(A′+B′) consists of all the even elements of Zk. Since for every x,
either x or −x ∈ A, there are at least 1

4
k even elements in A, and at least 1

4
k

odd elements in A. Therefore, since |A′| ≥ |A| − 2ε3k, A′ must contain an even
element and an odd element. This implies that A′ + Stab(A′ + B′) = Zk. Similarly
B′ + Stab(A′ + B′) = Zk. Thus (16) implies that we have |(A + B)ε3k| = k and so
(15) holds.

Now, we use (15) to deduce the claim. Let T = (A + B)ε3k \ (A +S B). We have
|A +S B| + |T | ≥ |(A + B)ε3k|. Notice that from the definition of (A + B)ε3k we have
ε3k|T | + |S| ≤ |A × B|. This, combined with (15) and |S| ≥ |A × B| − ε23k2 implies that
we have

|A+S B| ≥ |(A+B)ε3k| − |T |

≥ |(A+B)ε3k| −
1

ε3k
(|A×B| − |S|)

≥ |(A+B)ε3k| − ε3k

≥
(

1

2
+ ε4

)
k.

Claims 5.9 and 5.10 cannot be directly combined since sumsets in Claim 5.9 are in Z
whereas sumsets in Claim 5.10 are in Zk. However, Claim 5.9 gives us a set S such that
|S| ≥ |Qε5(0)×Q2ε5(7k)| − ε23k2 and we have

(
Qε5(0) +S Q2ε5(7k)

)
+ 13k ⊆ R(0). Part (iii)

of Claim 5.5 implies that there is a subset Q′ ⊆ (Qε5(0) +S Q2ε5(7k)) mod (k) such that
Q′ + 16k ⊆ R(0) and we have

|Q′| ≥ |(Qε5(0) +S Q2ε5(7k)) mod (k)| − 3ε1k. (18)

By Claim 5.10 and part (ii) of Claim 5.6, we have

|(Qε5(0) +S Q2ε5(7k)) mod (k)| ≥
(

1

2
+ ε4

)
k. (19)

Combining (18) and (19) implies that |R(0)∩ [16k, 17k−1]| ≥ (1/2 + ε4 − 3) ε1k. Applying
part (iv) of Claim 5.5 implies that for any w ∈ I, we have

|R(0) ∩ [w,w + k − 1]| ≥
(

1

2
+ ε4 − ε1

(w
k

+ 4
))

k.
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Combining this with m ≤ (4C2 + C3)k gives

|R(0) ∩ [m− 17k,m− 16k − 1]| ≥
(

1

2
+ ε4 − ε1(4C2 + C3 + 4)

)
. (20)

We can define R−(v) = {u ∈ I ∩GH : f([u+ 1, v]) < 0}. By symmetry, we obtain

|R−(m) ∩ [m− 17k,m− 16k − 1]| ≥
(

1

2
+ ε4 − 3ε1

)
k. (21)

Now, (20), (21), and ε4 > ε1(4C2 + C3 + 4) imply that we have

|R(m) ∩ [m− 17k,m− 16k − 1]| > 1

2
k,

|R−(m) ∩ [m− 17k,m− 16k − 1]| > 1

2
k.

Therefore, there is some v ∈ [m−17k,m−16k−1] such that v ∈ R(0) and v−1 ∈ R−(m).
By definition of R(0) and R(m) we obtain f(I) < 0.

As mentioned before, Claims 5.2 and 5.3 imply the theorem.

6 Remarks

In this section we discuss some further directions one might take with our approach to
Conjecture 1.1.

• The constant 1046 in Theorem 1.5 can certainly be improved by being more careful in
the proof. The main question is whether a better choice of hypergraphs Hn,k can lead
to a solution to Conjecture 1.1. It is not clear what kind of hypergraphs one should
look for. Although in the above theorem, the hypergraphs Hn,k are quite sparse, this
does not seem to be crucial in the proof.

• The constant “1046” cannot be reduced to “4” in Theorem 1.5 without changing the
graphs Hn,k. Indeed for large k, the graphs H5(k−1),k do not have the MMS-property.
To see this, consider the following function f : V (G)→ R.

f(i) = k − 2 if i ≡ 0 (mod k − 1),

f(i) = −1 if i 6≡ 0 (mod k − 1).

It is easy to see that we have
∑

x∈V (G) f(x) = 0. For two vertices i and j let

p(i, j) =

{
The number of edges of H5(k−1),k containing i and j if i 6= j

0 if i = j.
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The graph H5(k−1),k has five nonnegative vertices 0, k− 1, 2(k− 1), 3(k− 1), 4(k− 1).
An edge e ∈ H5(k−1),k is nonnegative if and only if e contains at least two of these
vertices. Therefore the number of nonnegative edges in H5(k−1),k is at most

1

2

∑
i,j∈{0,k−1,2(k−1),

3(k−1),4(k−1)}

p(i, j) = 5p(0, k − 1) + 5p(0, 2(k − 1)). (22)

Notice that an edge e(−v, i, j) contains both 0 and k − 1 if and only if we have

i ≥ v + 1, (23)

j ≥ v, (24)

i+ j ≥ v + k − 1. (25)

It’s easy to check that the number of triples (v, i, j) which satisfy (23) – (25) is less
than 1

6
k3 + o(k3), which implies that p(0, k − 1) = 1

6
k3 + o(k3).

The only edges H5(k−1),k which contain 0 and 2(k − 1) are of the form e(0, i, k − 1)
for some i, so we have that p(0, 2(k − 1)) = k − 1. Therefore, there are less than
5
6
k3 + o(k3) nonnegative edges in H5(k−1),k which is smaller than k(k − 1)2 for large

enough k.

The above argument shows that the constant “1046” in Theorem 1.5 cannot be re-
duced to less than 5. This shows that Conjecture 1.1 cannot be solved by the
argument we used in this paper without changing the graphs Hn,k to some other
construction.

• We conclude with the following general problem.

Problem 6.1. Which hypergraphs have the MMS-property?

This problem is probably quite hard, since a solution to it would mean a general-
ization of Conjecture 1.1. However, perhaps looking for hypergraphs which have the
MMS-property would lead to improved bounds on Conjecture 1.1.

Acknowledgment

The author would like to thank Peter Allen, Jan van den Heuvel, Jozef Skokan, and Benny
Sudakov for their advice and discussions.

References

[1] N. Alon, H. Huang, and B. Sudakov. Nonnegative k-sums, fractional covers, and
probability of small deviations. J. Combinatorial Theory Ser. B, 102:784–796, 2012.

[2] B. Bollobás. Combinatorics. Cambridge University Press, 1986.

24
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