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Prove propositions you like, it helps to decide whether you are interested in (quali-
fied for) the subject “Monochromatic connected pieces” (offered within BSM Elective
Undergraduate Research Program, 2013 SPRING). Further material is in my survey
paper 2011/139, http://www.renyi.hu/ gyarfas/.

Proposition 1 (Warm up) In every 2-coloring of the edges of a complete graph there
1s a monochromatic spanning tree.

Proposition 2 In every 2-coloring of the edges of a complete graph there is a monochro-
matic spanning tree of height at most two.

Proposition 3 In every 2-coloring of the edges of a complete graph there is a monochro-
matic spanning octopus (disjoint paths apart from a common root).

Proposition 4 In every 2-coloring of the edges of a complete graph there is a monochro-
matic spanning subgraph with diameter at most three.

The next one is from the 2012 Schweitzer competition (take home problems for a
week to Hungarian University students)

Proposition 5 In every 2-coloring of the edges of a k-chromatic graph, there is a
monochromatic tree with at least k vertices.

Proposition 6 The vertices of a complete graph form a convex polygon on a plane.
Prove that in every 2-coloring of the edges there is a monochromatic spanning tree
without crossing edges.



Proposition 7 Suppose that the edges of a complete graph are colored so that no
triangle is colored with three distinct colors. Prove that there is a monochromatic
spanning tree.

Proposition 8 In every 2-coloring of the edges of a complete graph K,,n > 5, there
18 a monochromatic 2-connected subgraph with at least n — 2 vertices.

Let a(G) denote the maximum number of pairwise nonadjacent vertices of a graph.

Proposition 9 In every 2-coloring of the edges of a graph G there is a monochro-

matic connected subgraph with at least |Z((g))| vertices.

Proposition 10 In every 2-coloring of the edges of a graph of minimum degree
I(G) > w there is a monochromatic component with more than 6(G) vertices.

Proposition 11 In every 3-coloring of the edges of the complete 3-uniform hyper-
graph K3 there is a monochromatic spanning component.

Proposition 12 Suppose that the edges of the complete 3-uniform hypergraph K&
are 4-colored so that there is no tetrahedron (K3 ) whose edges are colored with four
distinct colors. Then there is a monochromatic spanning component.



