Forbidden Configurations - Stability Theorems

A. Sali
sali.attila@renyi.hu

June 2, 2023

We need some basic definitions. Define a matrix to be simple if it is a $(0,1)$-matrix with no repeated columns. Then an $m \times n$ simple matrix corresponds to a simple hypergraph or set system on m vertices with n edges. For a matrix A, let $|A|$ denote the number of columns in A. For a (0,1)-matrix F, we define that a (0,1)-matrix A has no F as a configuration if there is no submatrix of A which is a row and column permutation of F. Let $\operatorname{Avoid}(m, F)$ denote the set of all m-rowed simple matrices with no configuration F. Our main extremal problem is to compute

$$
\begin{equation*}
\operatorname{forb}(m, F)=\max _{A}\{|A|: A \in \operatorname{Avoid}(m, F)\} \tag{1}
\end{equation*}
$$

Let $\operatorname{Avoid}(m, \mathcal{F})$ denote the set of all m-rowed simple matrices with no configuration $F \in \mathcal{F}$. Define

$$
\begin{equation*}
\text { forb }(m, \mathcal{F})=\max _{A}\{|A|: A \in \operatorname{Avoid}(m, \mathcal{F})\} \tag{2}
\end{equation*}
$$

The following product is important. Let A and B be $(0,1)$-matrices. We define the product $A \times B$ by taking each column of A and putting it on top of every column of B. Hence if $|A|=a$ and $|B|=b$ then $|A \times B|$ is $a b$. Let I_{m} be the $m \times m$ identity matrix, I_{m}^{c} be the (0,1)-complement of I_{m} (all ones except for the diagonal) and let T_{m} be the triangular matrix, namely the (0,1)-matrix with a 1 in position i, j if and only if $i \leq j$. The main conjecture states the following. Let $X(F)$ be the smallest p so that F is a configuration in $A_{1} \times A_{2} \times \ldots \times A_{p}$ for every choice of A_{i} as either $I_{m / p}, I_{m / p}^{c}$ or $T_{m / p}$. Alternatively, assuming F is not a configuration in at least one of I, I^{c}, T, then $X(F)-1$ is the largest choice of p so that F is not a configuration in $A_{1} \times A_{2} \times \ldots \times A_{p}$ for some choice of A_{i} as either $I_{m / p}, I_{m / p}^{c}$ or $T_{m / p}$.

Conjecture 0.1

$$
\begin{equation*}
\operatorname{forb}(m, F)=\Theta\left(m^{X(F)-1}\right) \tag{3}
\end{equation*}
$$

A possible way to attack cases of the conjecture is to establish stability results. That is, statements like"if $A \in \operatorname{Avoid}(m, F)$ and $|A|>c_{0} m^{X(F)-2}$, then A must contain a large
configuration of some of the products defining $X(F)$ ". One such example is a theorem of Anstee and Keevash from 2006
https://www.sciencedirect.com/science/article/pii/S0195669806000771.
In our proposed research we would look for small forbidden configurations that have a single product defining $X(F)$. One such example is

$$
F_{1}=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 1 \tag{4}\\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

We know that forb $\left(m, F_{1}\right)=\left\lfloor\frac{m^{2}}{4}\right\rfloor+m+1$, but we do not have yet a stability theorem for it. Stability theorems are interesting for their own sake, occur in several contexts in graph and hypergraph theory.

A good survey paper to get into the mood is Anstee's dynamic survey https://www.combinatorics.org/ojs/index.php/eljc/article/view/v8i1r4/pdf Introductory Problems:

1. Prove that forb $(m, F)=\operatorname{forb}\left(m, F^{c}\right)$, where F^{c} is the $0-1$-complement of F.
2. What is forb $\left(m, I_{2}\right)$? What is forb $\left(m,\left\{I_{2}, T_{2}\right\}\right)$?
3. Let F be a k-rowed matrix. Suppose we have $A \in \operatorname{Avoid}(m, F)$ such that $|A|=$ forb (m, F). Consider deleting a row r. Let $C_{r}(A)$ be the matrix that consists of the repeated columns of the matrix that is obtained when deleting row r from A. If we permute the rows of A so that r becomes the first row, then after some column permutations, A looks like this:

$$
A=r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \tag{5}\\
B_{r}(A) & & C_{r}(A) & C_{r}(A) & & D_{r}(A)
\end{array}\right] .
$$

where $B_{r}(A)$ are the columns that appear with a 0 on row r, but don't appear with a 1 , and $D_{r}(A)$ are the columns that appear with a 1 but not a 0 . Prove that

$$
\begin{equation*}
\operatorname{forb}(m, F) \leq\left|C_{r}(A)\right|+\operatorname{forb}(m-1, F) \tag{6}
\end{equation*}
$$

4. Prove that

$$
\begin{equation*}
\operatorname{forb}\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\ldots+\binom{m}{0} . \tag{7}
\end{equation*}
$$

5. Prove that

$$
I_{p} \times T_{p} \in \operatorname{Avoid}\left(m,\left(\begin{array}{ll}
1 & 0 \tag{8}\\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)\right)
$$

6. Find the unique two-term product defining $X\left(F_{1}\right)$.
