Preliminary assignment for the research course "Lipschitz and Hölder images of Cantor sets and more general self-similar sets and metric spaces"

BSM, 2023 Summer Tamás Keleti tamas.keleti@gmail.com

Solve as much as you can and send me your solutions by email. Don't hesitate to ask me if you need clarification or you have any question.

- 1. Find the definitions of Hausdorff and upper box dimension, and (directly from one of the equivalent definitions) prove that if X and Y are metric spaces and X can be mapped onto Y by a Lipschitz map then dim_H $Y \leq \dim_H X$ and $\overline{\dim}_B Y \leq \overline{\dim}_B X$, where dim_H and $\overline{\dim}_B$ denotes the Hausdorff dimension and the upper box dimension, respectively.
- 2. A compact set $S \subset \mathbb{R}^n$ is called a self-similar set with the strong separation condition (SSC) if there exist contracting similarity maps $f_1, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}^n$ such that $S = \bigsqcup_{i=1}^k f_i(S)$, where \bigsqcup denotes disjoint union. A metric space (Y, d) is called an ultrametric space if the triangle inequality is strengthened to $d(x, z) \leq \max \{ d(x, y), d(y, z) \}$. Two metric spaces X and Y are called bilipshitz equivalent if there exists a bijection $f : X \to Y$ such that both fand its inverse are Lipschitz.

Prove that in \mathbb{R}^n any self-similar set with the SSC is bilipshitz equivalent to an ultrametric space.

3. For a metric space $(X, d), x_1, \ldots, x_n \in X$ and s > 0 define

$$Z^{s}(x_{1},...,x_{n}) = \max\left\{\sum_{j=1}^{k-1} (d(x_{i_{j}},x_{i_{j+1}}))^{s} : 1 = i_{1} < \ldots < i_{k} = n\right\},\$$

$$\delta^{s}(X) = \sup\left\{\min_{\pi \in \operatorname{Sym}(n)} Z^{s}(x_{\pi(1)},\ldots,x_{\pi(n)}) : x_{1},\ldots,x_{n} \in X, n \ge 1\right\},\$$

where by $\operatorname{Sym}(n)$ we mean the set of permutations of $\{1, \ldots, n\}$. Let X be a compact metric space and $\alpha > 0$. Prove that there exist a compact set $D \subset [0, 1]$ and an α -Hölder onto map $g: D \to X$ if and only if $\delta^{1/\alpha}(X) < \infty$.

4. Let C be the classical Cantor set. Prove or disprove that a subset A of C can be mapped onto C by a Lipschitz map if and only if A contains a similar copy of C.

Have fun!