Bond percolation via the belief propagation algorithm and spectra of Hashimoto matrices

Advisor: Prof. Marianna Bolla, DSc.

Qualifying exercises (it suffices to solve two of them):

- 1. Find the eigenvalues of the adjacency matrix of the following graphs:
 - (a) K_n : the complete graph on n vertices, $n \in \mathbb{N}$.
 - (b) C_4 : the cycle of length 4.

Please, derive those by hand calculations, numerical results without explanation are not accepted.

- 2. Show that if A and B are arbitrary $n \times n$ symmetric, positive definite real matrices, then AB (usually not symmetric) has positive real eigenvalues. (Note that A and B usually do not commute, so their eigenvalues are not multiplied together.)
- 3. With the help of the Euler formula $(e^{it} = \cos t + i \sin t, t \in \mathbb{R})$ compute the following complex number: 5^{2+3i} .

(Here *i* is the imaginary unit and *e* is the base of the natural logarithm. $5^{2+3i} = 5^{(2+3i)}$, the exponent is a complex number in algebraic form, and give the result in a closed algebraic form.)