Bond percolation via the belief propagation algorithm and spectra of Hashimoto matrices

Advisor: Prof. Marianna Bolla, DSc.
Qualifying exercises (it suffices to solve two of them):

1. Find the eigenvalues of the adjacency matrix of the following graphs:
(a) $K_{n}$ : the complete graph on $n$ vertices, $n \in \mathbb{N}$.
(b) $C_{4}$ : the cycle of length 4 .

Please, derive those by hand calculations, numerical results without explanation are not accepted.
2. Show that if $\boldsymbol{A}$ and $\boldsymbol{B}$ are arbitrary $n \times n$ symmetric, positive definite real matrices, then $\boldsymbol{A B}$ (usually not symmetric) has positive real eigenvalues. (Note that $\boldsymbol{A}$ and $\boldsymbol{B}$ usually do not commute, so their eigenvalues are not multiplied together.)
3. With the help of the Euler formula ( $e^{i t}=\cos t+i \sin t, t \in \mathbb{R}$ ) compute the following complex number: $5^{2+3 i}$.
(Here $i$ is the imaginary unit and $e$ is the base of the natural logarithm. $5^{2+3 i}=5^{(2+3 i)}$, the exponent is a complex number in algebraic form, and give the result in a closed algebraic form.)

