
Artificial Intelligence and Unit Distance Graphs
Let X ⊆ R2 be a finite planar subset. We can give X the structure of an undirected planar graph called a
Unit Distance Graph by letting the edge set comprise those vertex pairs {x, y} ∈ X that are unit distance
apart: |x − y| = 1. The question of what is the maximum number of edges of a UDG of a given number of
vertices is still open since was posed by Erdős in 1946 [1]. Even the asymptotic behavior is unclear as the
known upper [2] and lower [3] bounds are quite far apart.

There are at least two research directions one could go with this, that quite probably involve the use of
computer search.

1. In Spring and Summer 2023 RES projects, we have developed a computer search algorithm that could
find all the best known UDGs in [2, Table 1] and moreover go on and find dense UDGs up to vertex
number 100. We can probably go up to a few hundred vertices. We seek to improve the lower bound by
trying to find in this database a construction pattern that we can continue indefinitely.

2. Also, the question of what is the densest UDG can be similarly studied for UDGs on the sphere X ⊆ S2,
in the space X ⊆ R3, etc. Here, we could again try to look for dense UDGs by computer search.

Prerequisites
Strong command of the Python numerical library numpy.

Qualifying problem
The Moser lattice is the lattice

{a + bω2 + cω3 + dω2ω3 : a, b, c, d ∈ Z} ⊂ C where ω2 = 1
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If the points of a UDG of n vertices are in the Moser lattice, then it can be given by the (n, 4) matrix of
coefficients in the base (1, ω2, ω3, ω2ω3). Write a function

rotate(coefficients: ndarray) -> ndarray

that given a UDG with Moser lattice coefficients outputs the Moser lattice coordinates of the UDG that has
been rotated by π

3 counterclockwise around the origin. For example, here’s how the Moser spindle would
rotate:

assert(np.array_equal(
rotate(np.array([[0,0,0,0], [1,0,0,0], [0,1,0,0], [1,1,0,0], [0,0,1,0], [0,0,0,1], [0,0,1,1]])),
np.array([[0,0,0,0], [0,1,0,0], [-1,1,0,0], [-1,2,0,0], [0,0,0,1], [0,0,-1,1], [0,0,-1,2]
]

)

Try not to use a python loop but use effective, vectorized numpy operations.

Contact
Pál Zsámboki, zsamboki@renyi.hu, Alfréd Rényi Institute of Mathematics
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