# Forbidden Configurations Research Proposal 

Attila Sali<br>sali.attila@renyi.hu

April 10, 2020

We need some basic definitions. Define a matrix to be simple if it is a $(0,1)$-matrix with no repeated columns. Then an $m \times n$ simple matrix corresponds to a simple hypergraph or set system on $m$ vertices with $n$ edges as columns of the matrix are the characteristic vectors of sets in the set system. For a matrix $A$, let $|A|$ denote the number of columns in $A$. For a $(0,1)$-matrix $F$, we define that a $(0,1)$-matrix $A$ has $F$ as a configuration if there is a submatrix of $A$ which is a row and/or column permutation of $F$, in notation $F \prec A$. Let $\operatorname{Avoid}(m, F)$ denote the set of all $m$-rowed simple matrices with no configuration $F$. The fundamental extremal problem is to compute

$$
\begin{equation*}
\operatorname{forb}(m, F)=\max _{A}\{|A|: A \in \operatorname{Avoid}(m, F)\} . \tag{1}
\end{equation*}
$$

Let $\operatorname{Avoid}(m, \mathcal{F})$ denote the set of all $m$-rowed simple matrices with no configuration $F \in \mathcal{F}$. Define

$$
\begin{equation*}
\operatorname{forb}(m, \mathcal{F})=\max _{A}\{|A|: A \in \operatorname{Avoid}(m, \mathcal{F})\} \tag{2}
\end{equation*}
$$

The following product is important. Let $A$ and $B$ be $(0,1)$-matrices. We define the product $A \times B$ by taking each column of $A$ and putting it on top of every column of $B$. Hence if $|A|=a$ and $|B|=b$ then $|A \times B|$ is $a b$. For example, the vertex-edge incidence matrix of the complete bipartite graph $K_{m / 2, m / 2}$ is $I_{m / 2} \times I_{m / 2}$. Let $I_{m}$ be the $m \times m$ identity matrix, $I_{m}^{c}$ be the ( 0,1 )-complement of $I_{m}$ (all ones except for the diagonal) and let $T_{m}$ be the triangular matrix, namely the ( 0,1 )-matrix with a 1 in position $i, j$ if and only if $i \leq j$. The following is main motivating conjecture.
Conjecture 0.1 [2] Let $F$ be a $k \times \ell$ matrix with $F \neq\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Let $X(F)$ denote the largest $p$ such that there are choices $A_{1}, A_{2}, \ldots, A_{p} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$ so that $F \nprec$ $A_{1} \times A_{2} \times \cdots \times A_{p}$. Then forb $(m, F)=\Theta\left(m^{X(F)}\right)$.

Many special cases have been verified, for details one may consult [1]. In the current research proposal we extend the questions from ( 0,1 )-matrices to $r$-matrices. An $r$ matrix is a matrix with entries from $\{0,1, \ldots, r-1\}$. Concepts of simple matrix,
configuration extend naturally and $\operatorname{Avoid}(m, r, \mathcal{F})$ denote the set of all $m$-rowed simple $r$-matrices with no configuration $F \in \mathcal{F}$ similarly let forb $(m, r, \mathcal{F})=\max _{A}\{|A|$ : $A \in \operatorname{Avoid}(m, r, \mathcal{F})\}$. It was proven in [3] that forb $(m, r, \mathcal{F})$ is of polynomial order of magnitude if and only if $\mathcal{F}$ contains an $(i, j)$-matrix for every $0 \leq i<j \leq r-1$, where an $(i, j)$-matrix is a matrix with entries $i$ and $j$. This gives two major research directions. First, we may look for special collections of $(i, j)$-matrices $\mathcal{F}$. Let $F$ be a $(0,1)$-matrix, define $F(i, j)$ as the $(i, j)$-matrix given by replacing the 0 's in $F$ with $i$ 's and the 1 's in $F$ with $j$ 's. Furthermore, let

$$
\operatorname{Sym}(F)=\{F(i, j): 0 \leq i<j \leq r-1\} .
$$

A similar set is

$$
\mathbf{S}(F)=\{F(i, j): 0 \leq i, j \leq r-1, i \neq j\} .
$$

Investigations of these have been started but there are many open problems. One interesting problem is the following. If $F^{c}$ denotes the 0-1-complement of a ( 0,1 )-matrix $F$, then we see that $\mathbf{S}(F)=\operatorname{Sym}(F) \cup \operatorname{Sym}\left(F^{c}\right)$, in particular forb $(m, r, \operatorname{Sym}(F))=$ forb $(m, r, \mathbf{S}(F))$ if $F=F^{c}$. One should find $F$ where forb $(m, r, \operatorname{Sym}(F))$ and forb $(m, r, \mathbf{S}(F))$ are of different order of magnitude.

Another possible direction is not to worry about exponential bounds. One may look at forb $(m, r, F)$ for a $(0,1)$-matrix $F$ and try to find exact exponential bounds. Some preliminary investigations have been done in this direction, as well. Let $K_{k}$ denote the $k \times 2^{k}(0,1)$-matrix of all distinct columns. It follows from an early result of Alon that forb $\left(m, r, K_{2}\right)$ is the number of columns with at most one entry 1 . We conjecture that for $F=\left[\begin{array}{lllll}0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]$, forb $(m, r, F)$ is also the number of columns with at most one entry 1.
Here are some practice problems to get into the mood:

1. Prove that forb $(m, F)=\operatorname{forb}\left(m, F^{c}\right)$, where $F^{c}$ is the $0-1$-complement of $F$.
2. What is forb $\left(m, I_{2}\right)$ ? What is forb $\left(m,\left\{I_{2}, T_{2}\right\}\right)$ ?
3. Let $F$ be a $k$-rowed matrix. Suppose we have $A \in \operatorname{Avoid}(m, F)$ such that $|A|=$ forb $(m, F)$. Consider deleting a row $r$. Let $C_{r}(A)$ be the matrix that consists of the repeated columns of the matrix that is obtained when deleting row $r$ from $A$. If we permute the rows of $A$ so that $r$ becomes the first row, then after some column permutations, $A$ looks like this:

$$
A=r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1  \tag{3}\\
B_{r}(A) & & C_{r}(A) & C_{r}(A) & & D_{r}(A)
\end{array}\right] .
$$

where $B_{r}(A)$ are the columns that appear with a 0 on row $r$, but don't appear with a 1 , and $D_{r}(A)$ are the columns that appear with a 1 but not a 0 . Prove that

$$
\begin{equation*}
\operatorname{forb}(m, F) \leq\left|C_{r}(A)\right|+\operatorname{forb}(m-1, F) \tag{4}
\end{equation*}
$$

4. Let $K_{k}$ denote the $k \times 2^{k}$ simple $0-1$-matrix (configuration). Use the decomposition (3) and the inequality (4) to prove that forb $\left(m, K_{k}\right)=O\left(m^{k-1}\right)$.
5. Prove that

$$
\begin{equation*}
\operatorname{forb}\left(m, K_{k}\right) \geq\binom{ m}{k-1}+\binom{m}{k-2}+\ldots+\binom{m}{0} . \tag{5}
\end{equation*}
$$

6. Do we have equality in (5)?
7. Prove that

$$
I_{p} \times T_{p} \in \operatorname{Avoid}\left(m,\left(\begin{array}{ll}
1 & 0  \tag{6}\\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)\right)
$$

8.     * Assume that we consider forbidden configurations of $\{0,1,2\}$-matrices. Let $\mathcal{T}_{i, j, k}=\left\{\left(\begin{array}{cc}j & k \\ i & j\end{array}\right)\right.$ for $\left.i, j, k \in\{0,1,2\}\right\}$. Here we assume that $i=j=k$ does not hold. What is forb $\left(m, 3, \mathcal{T}_{i, j, k}\right)$ ?

## References

[1] R.P. Anstee. A Survey of forbidden configurations results. Elec. J. of Combinatorics 20, DS20, (2013).
[2] R.P. Anstee, A. Sali. Small Forbidden Configurations IV. Combinatorica 25:503-518, (2005).
[3] Z. Füredi and A. Sali, Optimal multivalued shattering. SIAM Journal on Discrete Mathematics, 26(2) 737-744, 2012.

