
1 Knots and knot invariants

1.1 Introduction

Definition 1. A knot K is a C∞ function K : S1 → S3(= R
3 ∪ {∞}), where S1 = {(x, y) ∈

R
2|x2 + y2 = 1}. K has three C∞ coordinate functions (x(ϑ), y(ϑ), z(ϑ)) giving embeddings, that

is, K is an embedding of the circle into the 3-sphere/ S1 into S3.

Definition 2. Two knots K0 and K1 are isotopic if there is a smooth map K : S1 × [0, 1] →
R

3 × [0, 1], such that

• Kt = K |S1×{t} is a knot,

• for t = 0 and 1, K0 and K1 are the given knots.

This means that K0 can be moved into K1 without cutting.

The main problem of knot theory is to distinguish knots from each other. There are several
ways to study them: the most topological one is to view knots as subspaces of R

3, while a
rather combinatorial idea is to consider their projection to a plane. For a generic choice of this
plane, we can assume that the projection of the knot has at most double points. Moreover, it is
an immersion with finitely many double points. At the double points, we illustrate the strand
passing under as an interrupted curve segment, see Figure 1. The resulting diagram D is called
the knot diagram of K, and the neighborhood of a double point a crossing. It is obvious that
the knot diagram determines the knot up to isotopy.

Figure 1: Crossing in a diagram

The trivial knot is usually called the unknot and is denoted by U . Figure 2 shows two
diagrams of U .

Figure 2: Two diagrams of the unknot

Definition 3. An l-component link is the disjoint union of l knots.

There are three important local modifications of a knot diagram, called the Reidemeister
moves, shown on Figure 3:

• R1: Twisting or untwisting a strand,

• R2: Moving a loop over another strand or removing it from that,

• R3: Sliding a string over or under a crossing

The other parts of the diagram stay unchanged. It is easy to see that the Reidemeister moves
preserve the knot up to isotopy, but also more is true:
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Figure 3: Reidemeister moves

Theorem 4 (Reidemeister). Two knot diagrams D1 and D2 represent equivalent knots if and
only if they can be transformed to each other by a finite sequence of Reidemeister moves and
planar isotopies.

To classify knots, is very useful to introduce quantities that stay unchanged under isotopy.
These are called knot invariants. In this series of lectures we observe how knot theory and knot
invariants has evolved in the past years. Our main goal is to measure the complexity of knots.
To this, we focus on the following questions:

1. How to identify the unknot U? Can we give an invariant that detects U? (We are going to
see such an example.)

2. If a knot is not the trivial one, how far is it from being the unknot? To determine this, we
introduce three numbers:

(a) The unknotting number u(K)
u(K) is the minimal number of crossing changes needed to transform K to U . It can
be shown as an exercise, that u(K) always exists.

(b) The crossing number cr(K)
cr(K) is the minimal number of crossings K has in any diagram. The crossing number
is always a non-negative integer, and equals 0 if and only if K is the unknot.

Remark 5. There is no non-trivial knot with 1 or 2 crossings.

These provide upper bounds on the complexity of knots. However, to obtain more precise
results, for example to know the minimal values of the above numbers, we need lower
estimates too. Now we show some ways to get lower bounds.

1.2 Three-colorings

Definition 6. A diagram D is three-colorable if we can associate a color out of {red, white,
green} to every arc of D such that
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• we use at least two colors,

• at each crossing either only one or all the three colors are used to color the meeting arcs.

Example 7. The following diagrams of the unknot and the figure-8 knot are not three-colorable,
while the ones for the left-handed and the right-handed trefoil are.

It is obvious that this property depends on the chosen diagram of the knot. But how do we
know in case of a not three-colorable diagram if there exists another choice of the projection
that is three-colorable?

Theorem 8. If D1 and D2 are two diagrams corresponding to the same knot, then D1 is three-
colorable if and only if D2 is three-colorable.

Proof. Isotopies obviously do not change this property of a diagram. Therefore it is enough to
check that nor do Reidemeister moves, see Figure 4.
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Figure 4: Invariance of three-colorability under Reidemeister moves

As a consequence, we see that there are at least two different knots: the unknot is not
three-colorable, while the trefoil knot is.

We can improve this idea by using more colors, as follows:

Definition 9. Let q be an odd prime. A diagram D is q-colorable if the arcs of D can be colored
by {0, ..., q − 1} such that

• we use at least two colors,

• at each crossing colored with a, b and c, a + c ≡ 2b (mod q).

Example 10. The trefoil knot is not 5-colorable, but the figure-8 knot is.

Example 11. For p and q odd primes the diagram with p twists in Figure 5 admits a q-coloring
if and only if p = q.

We start coloring the arcs with colors a and b according to the figure. Then, at the first
crossing we have to use color 2b − a to satisfy a + c ≡ 2b (mod q). At the next crossing we can
only choose color 3b − 2a, etc. After reaching the last crossing, we get that the first colored arcs
have to be of the colors pb − (p − 1)a and (p + 1)b − p. These give us two equations:

pb − (p − 1)a ≡ a (mod q)

(p + 1)b − p ≡ b (mod q).

We get p(b − a) ≡ 0 (mod q), that is, q|p(b − a). This means that either q|b − a, meaning that
all the arcs were of the same color, or q|p, meaning that p = q.
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Figure 5: This diagram admits a q-coloring if and only if p = q.

We can generalize the idea of q-colorings by allowing to use only one color. Let C(q, K)
denote the set of all generalized q-colorings.

Theorem 12.

• C(q, K) forms a vector space over the finite field Fq = {0, ..., q − 1}.

• C(q, K) is independent of the choice of D, so it is a knot invariant.

• There exists a q-coloring if and only if dim C(q, K) > 1.

• dim C(q, K1#K2) = dim C(q, K1) + dim C(q, K2) − 1

• For the trefoil knot T and the connected sum operation #,

nT = T#T# · · · #T
︸ ︷︷ ︸

n

has dim C(3, nT ) = n + 1 - different for every value of n. Therefore, the knots obtained
this way are all different.

Theorem 13. For the unknotting number u(K) ≥ dim C(3, K) − 1.

The idea of the proof is that a crossing change can change C(3, K) by at most 1 dimension.
As a corollary, we get that nT has u(nT ) ≥ n.
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