Note

On r-Cover-free Families

Zoltán Füredi
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and Mathematical Institute of the Hungarian Academy of Sciences, P.O.B. 127, Budapest, 1364 Hungary

Communicated by the Managing Editors

Received January 12, 1995

Abstract

A very short proof is presented for the almost best upper bound for the size of an r-cover-free family over n elements. © 1996 Academic Press, Inc.

A family of sets \mathscr{F} is called r-cover-free if $A_{0} \nsubseteq A_{1} \cup A_{2} \cup \cdots \cup A_{r}$ holds for all distinct $A_{0}, A_{1}, \ldots, A_{r} \in \mathscr{F}$. Let $T(n, r)$ denote the maximum cardinality of such an \mathscr{F} over an n-element underlying set. This notion was introduced by Kautz and Singleton [4] in 1964 concerning binary codes. They proved $\Omega\left(1 / r^{2}\right) \leqslant \log T(n, r) / n \leqslant O(1 / r)$ (log is always of base 2). This result was rediscovered several times in information theory, in combinatorics [2], and in group testing [3]. A recent account and related problems can be found in Körner [5]. Dyachkov and Rykov [1] obtained with a rather involved proof that $\log T(n / r) / n \leqslant O\left(\log r / r^{2}\right)$. Recently, Ruszinkó [6] gave a purely combinatorial proof. Our aim is to present an even simpler argument to show that

$$
\begin{equation*}
\frac{\log T(n, r)}{n} \leqslant \frac{4 \log r+O(1)}{r^{2}} . \tag{1}
\end{equation*}
$$

This upper bound is twice as good as that of [6], but about half as good as that obtained from the inductive proof of [1]. Our argument is implicitly contained in Erdős, Frankl, and Füredi [2].

Theorem. If \mathscr{F} is a family of subsets of an n-element underlying set V such that no set $F_{0} \in \mathscr{F}$ is contained in the union of r other members of \mathscr{F}, then

$$
\begin{equation*}
|\mathscr{F}| \leqslant r+\binom{n}{\left[(n-r) /\binom{r+1}{2}\right]} . \tag{2}
\end{equation*}
$$

172

Proof. Fix an integer t with $n / 2 \geqslant t>0$. Define $\mathscr{F}_{t} \subset \mathscr{F}$ as the family of members having its own t-subset, i.e., $\mathscr{F}_{t}:=\{F \in \mathscr{F}$: there exists a t-element set $A \subseteq F$ such that $A \nsubseteq F^{\prime}$ holds for every other $\left.F^{\prime} \in \mathscr{F}\right\}$, and let \mathscr{A} be the family of these t-subsets. Let $\mathscr{F}_{0}:=\{F \in \mathscr{F}:|F|<t\}$, and let \mathscr{B} be the family of t-sets containing a member of \mathscr{F}_{0}, i.e., $\mathscr{B}:=\{T: T \subset V,|T|=t$, and there exists some $F \in \mathscr{F}_{0}$ with $\left.T \supset F\right\}$. The set-system \mathscr{F} is an antichain; no two members contain each other. This implies that \mathscr{A} and \mathscr{B} are disjoint. A lemma of Sperner [7] states that $\left|\mathscr{F}_{0}\right| \leqslant|\mathscr{B}|$. We obtain that $\left|\mathscr{F}_{0} \cup \mathscr{F}_{t}\right| \leqslant|\mathscr{A}|+|\mathscr{B}| \leqslant\binom{ n}{t}$.

Let $\mathscr{F}^{\prime}:=\mathscr{F} \backslash\left(\mathscr{F}_{0} \cup \mathscr{F}_{t}\right)$. We claim that $F \in \mathscr{F}^{\prime}, F_{1}, F_{2}, \ldots, F_{i} \in \mathscr{F}$ imply

$$
\begin{equation*}
|F| \bigcup_{j \leqslant i} F_{j} \mid>t(r-i) . \tag{3}
\end{equation*}
$$

Indeed, if $F \backslash\left(F_{1} \cup \cdots \cup F_{i}\right)$ can be written as the union of the t-element sets $A_{i+1}, A_{i+2}, \ldots, A_{r}$, then by the choice of F there are members $F \neq F_{j} \in \mathscr{F}$ with $A_{j} \subseteq F_{j}$. Therefore $F \subset\left(F_{1} \cup \cdots \cup F_{r}\right)$, a contradiction.

Inequality (3) implies that for $F_{0}, F_{1}, \ldots, F_{r} \in \mathscr{F}^{\prime}$ one has $\left|\bigcup_{i \leqslant r} F_{i}\right|=$ $\left|F_{0}\right|+\left|F_{1} \backslash F_{0}\right|+\left|F_{2} \backslash\left(F_{1} \cup F_{0}\right)\right|+\cdots+\left|F_{r} \backslash\left(F_{0} \cup F_{1} \cup \cdots \cup F_{r-1}\right)\right| \geqslant r+1+$ $t\left({ }_{(}^{r+1} 2\right)$. Here the right-hand side exceeds n for $t:=\left\lceil(n-r) /\binom{r+1}{2}\right\rceil$, implying $\left|\mathscr{F}^{\prime}\right| \leqslant r$.

Finally, the upper bound (1) easily follows from (2) using $\binom{n}{t} \leqslant n^{t} / t!<$ $(e n / t)^{t}$.

Acknowledgment

This work was supported by grants OTKA 4269 and OTKA 016389 from the Hungarian National Science Foundation and by a National Security Agency grant No. MDA 904-95-H-1045.

References

1. A. G. Dyachkov and V. V. Rykov, Bounds on the length of disjunctive codes, Problemy Peredachi Informatsii 18, No. 3 (1982), 7-13. [Russian]
2. P. Erdős, P. Frankl, and Z. Füredi, Families of finite sets in which no set is covered by the union of r others, Israel J. Math. 51 (1985), 79-89.
3. F. K. Hwang and V. T. Sós, Non-adaptive hypergeometric group testing, Studia Sci. Math. Hungar. 22 (1987), 257-263.
4. W. H. Kautz and R. C. Singleton, Nonrandom binary superimposed codes, IEEE Trans. Inform. Theory 10 (1964), 363-377.
5. J. Körner, On the extremal combinatorics of the Hamming space, J. Combin. Theory Ser. A 71 (1995), 112-126.
6. M. Ruszinkó, On the upper bound of the size of the r-cover-free families, J. Combin. Theory Ser. A 66 (1994), 302-310.
7. E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544-548.
