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A very short proof is presented for the almost best upper bound for the size of
an r-cover-free family over n elements. � 1996 Academic Press, Inc.

A family of sets F is called r-cover-free if A0 �3 A1 _ A2 _ } } } _ Ar holds
for all distinct A0 , A1 , ..., Ar # F. Let T(n, r) denote the maximum car-
dinality of such an F over an n-element underlying set. This notion was
introduced by Kautz and Singleton [4] in 1964 concerning binary codes.
They proved 0(1�r2)�log T(n, r)�n�O(1�r) (log is always of base 2). This
result was rediscovered several times in information theory, in com-
binatorics [2], and in group testing [3]. A recent account and related
problems can be found in Ko� rner [5]. Dyachkov and Rykov [1] obtained
with a rather involved proof that log T(n�r)�n�O(log r�r2). Recently,
Ruszinko� [6] gave a purely combinatorial proof. Our aim is to present an
even simpler argument to show that

log T(n, r)
n

�
4 log r+O(1)

r2 . (1)

This upper bound is twice as good as that of [6], but about half as good
as that obtained from the inductive proof of [1]. Our argument is
implicitly contained in Erdo� s, Frankl, and Fu� redi [2].

Theorem. If F is a family of subsets of an n-element underlying set V
such that no set F0 # F is contained in the union of r other members of F,
then

|F|�r+\
n

+ . (2)

�(n&r)<\r+1
2 +|
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Proof. Fix an integer t with n�2�t>0. Define Ft/F as the family of
members having its own t-subset, i.e., Ft :=[F # F : there exists a t-element
set A�F such that A �3 F$ holds for every other F $ # F], and let A be the
family of these t-subsets. Let F0 :=[F # F : |F|<t], and let B be the
family of t-sets containing a member of F0 , i.e., B :=[T : T/V, |T|=t,
and there exists some F # F0 with T#F]. The set-system F is an antichain;
no two members contain each other. This implies that A and B are dis-
joint. A lemma of Sperner [7] states that |F0|�|B| . We obtain that
|F0 _ Ft |�|A|+|B|�( n

t ).
Let F$ :=F"(F0 _ Ft). We claim that F # F$, F1 , F2 , ..., Fi # F imply

}F>.
j�i

Fj }>t(r&i). (3)

Indeed, if F"(F1 _ } } } _ Fi) can be written as the union of the t-element sets
Ai+1 , Ai+2, ..., Ar , then by the choice of F there are members F{Fj # F
with Aj�Fj . Therefore F/(F1 _ } } } _ Fr), a contradiction.

Inequality (3) implies that for F0 , F1 , ..., Fr # F$ one has |� i�r Fi |=
|F0| + |F1 "F0 | + |F2 "(F1 _ F0)| + } } } + |Fr"(F0 _ F1 _ } } } _ Fr&1)| � r+1+
t( r+1

2 ). Here the right-hand side exceeds n for t :=W(n&r)�( r+1
2 )X, implying

|F$|�r. K

Finally, the upper bound (1) easily follows from (2) using ( n
t )�nt�t !<

(en�t)t.
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