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Single-user tracing and disjointly superimposed
codes

Mikl ós Cs̋urös and Mikĺos Ruszinḱo

Abstract— The zero-error capacity region of r-out of T user
multiple access OR channel is investigated. A familyF of subsets
of [n] = {1, . . . , n} is an r-single-user-tracing superimposed
code (r-SUT) if there exists such asingle-user-tracing function
φ : 2[n] 7→ F that for all F′ ⊆ F with 1 ≤ |F′| ≤ r, φ(∪A∈F′A) ∈
F′. In this paper we introduce the concept of these codes and give
bounds on their rate. We also consider disjointlyr-superimposed
codes.

Index Terms— codes, superimposed codes, group testing, phys-
ical mapping

I. I NTRODUCTION

SUPPOSE thatT users share a common channel. A binary
vector of lengthn is associated to each user. Theith user

transmits its vectorxi = (x1
i , x

2
i , . . . , x

n
i ) (i = 1, 2, . . . , T ) if

it is active, otherwise not. It is assumed that the transmission
is bit and block synchronized. The destination of the messages
is a single receiver that observes the bitwise OR vector of the
vectors

y =
∨

∀i active

xi

associated to the active users. Moreover, suppose that at most
r users are active simultaneously. In the classical framework of
superimposed coding, the receiver has to be able to identify the
set of all active users from the output vectory of the channel.
That is, the code must satisfy the property that for all choices
of x1, . . . ,xk andz1, . . . , z` of codewords with1 ≤ k, ` ≤ r
and{x1, . . . ,xk} 6= {z1, . . . , z`}, we have

k∨
i=1

xi 6=
∨̀
j=1

zj .

Although the rate of these codes have been studied extensively
in e.g., [1]–[6], it remains to be determined: the gap between
the known upper and lower bounds is still substantially large.
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Here we investigate the case when the receiver has to be
able to identify just oneuser out of at mostr active ones.
Clearly, if a code is superimposed in the classical sense then
it satisfies this requirement: being able to identify all active
users, the receiver can always name just one. A practical
motivation for studyingr-SUT families rises from applications
of combinatorial designs in genomics, reviewed in Section II.
Section III discusses our results on the rate of single-user
tracing superimposed codes. Section IV introduces the class
of disjointly superimposed codes, and analyzes their extremal
properties. Section V concludes the paper with some open
questions.

II. SUPERIMPOSED CODES FOR THE PHYSICAL MAPPING

OF GENOMIC CLONES

A recently emerging application of superimposed codes,
and group testing methods in general, is for the analysis of
genomic data. Examples include the quality-control of DNA
chips [7], and diverse applications related to genome sequenc-
ing: closing the remaining gaps at the end of a sequencing
project [8], and clone library screening [9], which we consider
here in more detail. The sequencing of large genomes (such as
human) rely ongenomic clones. We describe here briefly the
relevant procedures, somewhat simplifying the problem. A re-
cent overview of large genome sequencing techniques is given
by E. Green [10]. The genome of an organism can be described
by a sequence over a four-letter alphabet, corresponding to the
four nucleotides used in DNA. Mammalian genome sizes are
in the order of billions. For our purposes, a genomic clone
is a random contiguous fragment of the genome. (Fragments
are inserted into a host cell, which multiplies and thus creates
many identical copies of the original cell containing the same
piece of inserted foreign DNA fragment, hence the term
“clone.”) Typical clone fragment sizes are 100–200 thousand
nucleotides. Aclone library is a collection of genomic clones,
produced using a large number of random fragments from
many genome copies. The fragments correspond essentially to
a uniform sampling of the whole genome. The information on
which part of the genome the fragments originate from is lost
in the course of random sampling, and needs to be determined
using additional techniques. In a preliminary step to complete
genome sequencing, calledphysical mapping, this information
is established, by exploring overlaps between clone fragments.
Using the physical map, a smaller set of minimally overlapping
clones is selected in order to sequence the clones one-by-one.
For instance, while sequencing the human genome, more than
300 thousand genomic clones were analyzed and about 30
thousand were selected for complete sequencing [11].
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Fig. 1. Clone library screening. A clone library is a collection of random
fragments from a genome. Clones in a library are tested for the presence of
a sequence feature, such as homology to a given region in a related genome.
The tests are carried out by pooling the clones: if the clone subset comprising
the pool contains the feature, the test is positive, otherwise it is not.

The main issue in constructing a physical map is the
discovery of overlaps. The key technique is to test sequence
features, which are necessarily shared by overlapping clones.
Often, a group-testing approach is employed bypooling the
DNA from different clones: a pool is defined by a subset
of clones that are screened together in a single experimental
step. Figure 1 illustrates the concept of clone pooling. In
the terminology of superimposed codes, clones correspond
to users and pools correspond to the coordinates of the user
vectors: thei-th clone is included in poolj if the j-th bit of
user vectorxi equals one. Active users correspond to clones
containing a particular feature. When testing a feature, pools
are tested individually, and exactly those pools that contain a
clone with the given feature test positive. The set (or at least
one) of the clones containing the feature has to be determined
from the set of positive pools, in the same way as the set of
active users needs to be determined from the bitwise OR of
their vectors.

Historically, the most widely used features are short (up
to the order of hundreds of letters) contiguous sequences that
occur once in the genome, calledSequence Tagged Sites(STS).
All DNA in a pool can be tested for the presence of a given
STS, by hybridization for example. Pooling designs for the
purposes of STS screening have been studied extensively [9],
[12], [13], and this particular application inspired many recent
theoretical results on superimposed codes and non-adaptive
group testing procedures [14]–[17].

A more recent application uses shotgun sequences [18],
[19] for testing sequence features in pooled clones. Pooled
Genomic Indexing [19] maps genomic clones to a reference
genome sequence. Thus, the type of sequence feature that
is tested by PGI is similarity to a region in the reference

genome. In contrast to STS screening, the features are not
defined before the experiment but are found in the analysis of
the outcome. In a current application, (unsequenced) rhesus
macaque clones are being mapped to the human genome. The
raw outcome of the experiment is a list of mappings between
sets of pools and regions in the reference sequence. Each
mapping is indicative of the fact that some clones are similar
to the same region in the reference sequence. The set of pools
containing those clones is observed by the experimenter, along
with the reference region.

The results of STS screening or a PGI experiment can be
used to select clones for complete sequencing. If the purpose
of the experiment is to identify clones that are particularly
interesting and to sequence them completely, a single-user
tracing code is more adequate for the pooling design than a
“fully” superimposed code. In PGI, for instance, a number of
overlapping macaque clones may include the same region that
is homologous to a particular human gene: the experimenter
will want to identify at least one of those clones for complete
sequencing, but there is no need to identify all of them as they
convey the same information about the genome.

The boundr on the number of “active users”, i.e., the
number of clones exhibiting a given feature is determined
by the number of clonesT . The size of a clone library
is characterized by thecoverage, which equalsc = TL/G
where L is the average length of a clone, andG is the
total genome length. Various aspects of clone overlaps can
be studied by modeling the clone positions as arrival times
in a Poisson-process. For example, the number of clones that
include a given position in the genome is a Poisson random
variable with expected valuec [20]. Clone library coverage
values are typically below ten, and are rarely above twenty. If
unique sequence features are used, then every feature is shared
by, say, at mostr = d2ce clones with high probability.

III. S INGLE-USER TRACING SUPERIMPOSED CODES

As the question is rather of a combinatorial nature, we
introduce a set terminology. Accordingly, codewords are char-
acteristic vectors of subsets of a set[n] = {1, . . . , n} where
n > 0, i.e., the subsetA corresponds to the binary vectorx =
(x1, . . . , xn) with xi = 1 if and only if i ∈ A, and vice versa.

Throughout the paper, we use the de Finetti notation for
indicator functions, i.e.,{· · · } denotes an event, or its indicator
function, depending on the context. We writef(m) = o(g(m))
if the sequencef(m)/g(m) → 0 asm →∞. When the base
of the logarithm matters, we uselg to denote binary logarithm.

Definition 3.1: A family F ⊆ 2[n] is r-superimposed if

k⋃
i=1

Ai 6=
⋃̀
j=1

Bj

for any

{A1, A2, . . . , Ak} 6= {B1, B2, . . . , B`} ,

1 ≤ k, ` ≤ r; A1, A2, . . . , Ak, B1, B2, . . . , B` ∈ F.
We are interested inr-single-user-tracing(r-SUT) families,

defined as follows.
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Definition 3.2: A family F is r-SUT if for all choices of
F1, . . . ,Fk ⊆ F with 1 ≤ |Fi| ≤ r,⋃

A∈F1

A =
⋃

A∈F2

A = · · · =
⋃

A∈Fk

A

implies ∩k
i=1Fi 6= ∅. Equivalently, there exists such asingle-

user-tracing functionφ : 2[n] 7→ F that for all F′ ⊆ F with
1 ≤ |F′| ≤ r, φ(∪A∈F′A) ∈ F′.

The following (folklore) lemma shows that it is enough to
considerk ≤ r + 1 in Definition 3.2.

Lemma 3.3:Let k ≥ r + 1. Let S1, . . . , Sk be a collection
of sets, each containing at mostr elements. If for all choices
of 1 ≤ i1 < · · · < ir+1 ≤ k, ∩r+1

j=1Sij 6= ∅, then∩k
i=1Si 6= ∅.

Proof: For the sake of contradiction, suppose that
∩k

i=1Si = ∅. For all a ∈ S1, selecti(a) such thata 6∈ Si(a).
Then the intersection of the at most(r + 1) setsS1 andSi(a)

is empty.
For every base set sizen and r, let f(n, r) denote the

maximum size of anr-superimposed family, andg(n, r)
denote the maximum size of anr-SUT family. In what follows,
we give bounds on therate of r-SUT families, which is

Rg(r) = lim sup
n→∞

lg g(n, r)
n

.

Theorem 3.4:There exist constantsc1, c2 > 0 such that
c1

r2
≤ Rg(r) ≤

c2

r
(1)

Proof of the lower bound:Clearly, if F is r-superimposed then
it is r-SUT. Therefore

g(n, r) ≥ f(n, r) ≥ 2c1n/r2
,

where the latter inequality can be found, say, in [3]. This gives
the lower bound in (1).

In order to prove the upper bound, we relater-single-user-
tracing to another property investigated in [21], [22].

Definition 3.5: (Alon, Fachini, K̈orner, [21]) A familyF is
r-locally thin if for all subsetsF′ ⊆ F with |F′| = r, there
existsx ∈ [n] such that∑

A∈F′

{x ∈ A} = 1,

i.e., there exists an elementx that appears in exactly one
member ofF′.

We need the following strengthening of this definition.
Definition 3.6: A family F is ≤ r-locally thin if for all

subsetsF′ ⊆ F with 1 ≤ |F′| ≤ r, there exists suchx ∈ [n]
that ∑

A∈F′

{x ∈ A} = 1.

Lemma 3.7:If F is r-SUT then it is≤ (r +1)-locally thin.
Proof: Contrary to the lemma, assume that there is a

subsetF′ = {A1, . . . , Ak}, 1 ≤ k ≤ r + 1 for which∑k
i=1{x ∈ Ai} 6= 1 holds for all x ∈ [n]. For i = 1, . . . , k,

let Fi = F′ − {Ai}. Since every element is covered at least
twice by the members ofF′,⋃

A∈F1

A =
⋃

A∈F2

A = · · · =
⋃

A∈Fk

A, while
k⋂

j=1

Fj = ∅.

The existence ofF1, · · · ,Fk contradicts ther-SUT property.

Let h′(n, r), h∗(n, r) be the maximum size ofr-locally thin,
≤ r-locally thin families, respectively.

Corollary 3.8:

g(n, r) ≤ h∗(n, r + 1) ≤ h′(n, r + 1). (2)
Proof: Here the first inequality comes from Lemma 3.7,

while the second one follows directly from the definitions.
Alon, Fachini and K̈orner [21] proved the following theo-

rem.
Theorem 3.9:

Rh′(r) <
2
r

for r even;

Rh′(r) <
c log r

r
for r odd, c is constant.

(3)

Proof of the upper bound in Theorem 3.4:If r is odd,
then (r + 1) is even. Hence, by (2) and (3),

Rg(r) ≤ Rh∗(r + 1) ≤ Rh′(r + 1) <
2

r + 1
.

If r is even, then by the monotonicity ofh∗(n, r), (2), and
(3),

Rg(r) ≤ Rh∗(r + 1) ≤ Rh∗(r) ≤ Rh′(r) <
2
r
.

In either case, the upper bound holds in Eq. (1) withc2 = 2.

Lemma 3.10 below allows for an alternative, self-contained
proof of our upper bound onRg, without using the (strong)
bounds of Theorem 3.9. It gives a sufficient upper bound
for h∗(n, r) when r is even, which can then be employed
with the monotonicity argument.

Lemma 3.10:Let r be even. IfF is ≤ r-locally thin, then
the modulo two sums of(r/2)-sets of characteristic vectors
associated with members ofF are all different.

Proof: For the sake of contradiction assume that there are
two collectionsF1 and F2 with the same modulo two sums.
Consider the symmetric differenceF′ = F1 4 F2. Clearly,
it contains at mostr sets, and every element in∪A∈F′A is
covered at least twice (in fact, even times) by members ofF′.

Corollary 3.11: If r is even, thenRh∗(r) ≤ 2
r .

Proof: By Lemma 3.10,
(
h∗(n,r)

r/2

)
≤ 2n.

IV. D ISJOINTLY r-SUPERIMPOSED CODES

Another important case implicated in the multiple access
model of Section 1 is when the receiver must distinguish only
betweendisjoint sets of active users. The following definition
captures this notion.

Definition 4.1: A family F ⊆ 2[n] is disjointly r-
superimposed if

k⋃
i=1

Ai 6=
⋃̀
j=1

Bj (4)

is implied by

{A1, A2, . . . , Ak} ∩ {B1, B2, . . . , B`} = ∅
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for all 1 ≤ k, ` ≤ r; A1, A2, . . . , Ak, B1, B2, . . . , B` ∈ F.
Despite the seemingly slight difference between Defini-

tions 4.1 and 3.1, the extremal properties of disjointlyr-
superimposed families andr-superimposed ones are com-
pletely different.

Let h(n, r) be the maximum size of disjointlyr-
superimposed families.

Lemma 4.2:If F is r-superimposed then it isr-SUT. If F

is r-SUT, then it is disjointlyr-superimposed. Hence,

f(n, r) ≤ g(n, r) ≤ h(n, r).
Proof: The first part is already proved. The second

part follows from the fact that ifF is not disjointly r-
superimposed, then there existA = {A1, . . . , Ak} ⊆ F and
B = {B1, . . . , B`} ⊆ F such that∪k

i=1Ai = ∪`
j=1Bj while

A ∩B = ∅.
While we do not know if there is an exponential gap be-

tweenr-superimposed andr-SUT families, the following the-
orem shows that there is such a gap betweenr-superimposed
and disjointlyr-superimposed ones.

Theorem 4.3:The rate of disjointlyr-superimposed codes
is bounded as

1
2r

≤ Rh(r) ≤
(1

2
+ o(1)

) lg r

r
. (5)

The key to the upper bound is the following observation.
Lemma 4.4:If F is disjointly r-superimposed then the

vector sums ofr-size sets of characteristic vectors associated
with members ofF are all different.

Proof: For the sake of contradiction assume that there
are two collectionsF1,F2 ∈

(
F
r

)
, with the same vector sums.

ConsiderF′1 = F1\F2 andF′2 = F2\F1. Clearly,|F′1|, |F′2| ≤
r, and the vector sums of members ofF′1 andF′2 are the same.
But then∪A∈F′

1
A = ∪B∈F′

2
B, while F′1 andF′2 are disjoint,

which is a contradiction.
Now, in a vector sumy = (y1, . . . , yn) of r binary vectors,

0 ≤ yi ≤ r holds in every coordinatei. The number of
possible vector sums is thus(r + 1)n, and therefore(

h(n, r)
r

)
≤ (r + 1)n

must hold. This gives an upper bound with a constant factor
of 1 in (5). In order to obtain the factor of12 , we use a second
moment method combined with a volume argument: we show
that coordinates of almost all vectors inF deviate within

√
r

around the mean (instead ofr/2, as above). In fact, we show
that if a family F of subsets of[n] has the property that for
every choice ofr sets, the sum of the corresponding charac-
teristic vectors gives a different value, then the upper bound
in 5 already holds. We prove Theorem 4.3 after Lemma 4.5
below.

For a setA ⊆ {0, 1}n of binary vectors of lengthn, s(A)
stands for the sum of its elements:

s(A) =
∑
x∈A

x.

Lemma 4.5:Let F be a set of binary vectors of lengthn,
and letT = |F|. Let c = T−1

∑
v∈F v be the average vector

of the set. For every integer1 ≤ r ≤ T , the inequality

∑
A∈(F

r)

∥∥s(A)− rc
∥∥2 ≤ nr

(
T

r

)

holds, where‖ · ‖ is the Euclidean norm.

Proof: By definition of the norm,

∑
A∈(F

r)

∥∥s(A)− rc
∥∥2

=
∑

A∈(F
r)
‖s(A)‖2 +

∑
(F

r)
r2‖c‖2 −

∑
A∈(F

r)
2rcs(A) (6)

Clearly, the second term in (6) gives
(
T
r

)
r2‖c‖2. The third

term is

∑
A∈(F

r)
2rcs(A) = 2rc

(
T − 1
r − 1

) ∑
v∈F

v = 2
(

T

r

)
r2‖c‖2,

since in the sum
∑

A∈(F
r) s(A) every vectorv ∈ F appears

with multiplicity
(
T−1
r−1

)
, which is the number of distinctr-sets

in which a given vectorv is contained. The first term of (6)
can be bounded as follows.

∑
A∈(F

r)
‖s(A)‖2 =

∑
A∈(F

r)

∥∥∥∑
v∈A

v
∥∥∥2

≤
∑

A∈(F
r)

(
nr + 2

∑
1≤i<j≤r
vi,vj∈A

vivj

)

= nr

(
T

r

)
+ 2

(
T − 2
r − 2

) ∑
1≤i<j≤T
vi,vj∈F

vivj

= nr

(
T

r

)
+ 2

(
T − 2
r − 2

) ∑
1≤i<j≤T
vi,vj∈F

vivj

+
(

T − 2
r − 2

) ∑
v∈F

‖v‖2 −
(

T − 2
r − 2

) ∑
v∈F

‖v‖2

= nr

(
T

r

)
+

(
T − 2
r − 2

)∥∥∥∑
v∈F

v
∥∥∥2

−
(

T − 2
r − 2

) ∑
v∈F

‖v‖2

= nr

(
T

r

)
+

(
T − 2
r − 2

)
T 2‖c‖2 −

(
T − 2
r − 2

) ∑
v∈F

‖v‖2.

For the inequality, we used that the norm square of every
vector is at mostn, as every vector is binary. Subsequently,
we used that every pair of vectors appears together in ex-
actly

(
T−2
r−2

)
sets of sizer, and thus every productvivj occurs

that many times.
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Returning to Eq. (6), by the above computation we get∑
A∈(F

r)

∥∥s(A)− rc
∥∥2

≤ nr

(
T

r

)
+

(
T − 2
r − 2

)
T 2‖c‖2 −

(
T − 2
r − 2

) ∑
v∈F

‖v‖2

−
(

T

r

)
r2‖c‖2

= nr

(
T

r

)
+

(
T − 2
r − 2

)
T 2‖c‖2 −

(
T − 2
r − 2

) ∑
v∈F

‖v‖2

−
(

T − 2
r − 2

)
r2 T (T − 1)

r(r − 1)
‖c‖2.

From r ≤ T follows that−r2 T (T − 1)
r(r − 1)

≤ −T 2. Therefore,

∑
A∈(F

r)

∥∥s(A)− rc
∥∥2 ≤ nr

(
T

r

)
−

(
T − 2
r − 2

) ∑
v∈F

‖v‖2

+
(

T − 2
r − 2

)
T 2‖c‖2 −

(
T − 2
r − 2

)
T 2‖c‖2,

which implies to the desired result.
Proof of Theorem 4.3:First we prove the upper bound. Take

an arbitrary setF ⊆ {0, 1}n of binary vectors of lengthn, such
that the vector sums are different for all choices ofr vectors.
(By Lemma 4.4, the set of characteristic vectors for a disjointly
r-superimposed family fulfills this condition.) LetT = |F|. As
in Lemma 4.5, define the average vectorc = T−1

∑
v∈F v.

Let A ⊆ F be a random subset of sizer, chosen with uniform
probability. Consider the random variableξ = ‖s(A)−rc‖, the
distance ofs(A) from its mean. By Lemma 4.5 and Jensen’s
inequality [23], the expected distanceEξ ≤

√
nr. By Markov’s

inequality [23],

P{ξ ≥ λ−1
√

nr)} ≤ λ

for all 0 < λ < 1. This means that for any constant0 < λ < 1,
at least the(1 − λ) fraction of all sums forr-size subsets
of F lie within the n-dimensional ballB of radiusλ−1

√
nr

centered at the pointrc. Therefore, the number of integer
lattice points inB is an upper bound for(1−λ)

(
T
r

)
. Consider

a larger ballB′ with radius(
√

nr/λ +
√

n/2) centered atrc.
Its volume bounds the number of lattice points inB from
above. To see this, draw ann-dimensional unit cube centered
at each lattice point inB. All the cubes are withinB′, and to
each integer lattice point a unit volume is associated. Using
the well-known formula for the volume of ann-dimensional
ball (e.g., [24]),

(1− λ)
(

T

r

)
≤

πn/2
(
λ−1

√
nr + 1

2

√
n
)n

Γ(1 + n/2)
,

whereΓ(x) is the complete gamma function. An application
of Stirling’s approximation [23] to boundΓ(1+n/2) leads to

lg T

n
≤ lg r

2r
+ Θ

(1
r

)
+

o(n)
n

,

which is tantamount to the upper bound of (5).

We prove the lower bound in (5) with a probabilistic
argument. (This proof was also observed by Lászĺo Györfi.)

Let F be a randomly constructed family of sizeT , whereT
will be specified later. Every setAi ∈ F is constructed
randomly so thatx ∈ Ai with probability(1−2−1/r) for all x
independently. We prove thatF is disjointly r-superimposed
with non-zero probability for someT = 2Θ(n/r). Let A,B ⊆
F be two disjoint sets:A = {A1, . . . , Ak} and B =
{B1, . . . , B`}, whereA ∩ B = ∅ and 1 ≤ k, ` ≤ r. Define
A = ∪k

i=1Ai andB = ∪`
j=1Bj . Equation (4) is violated if for

all x ∈ [n], either x ∈ A ∩ B or x 6∈ A ∪ B. Since allAi

andBj are independent,

p(k, `) = P
⋂

x∈[n]

(
{x 6∈ A;x 6∈ B} ∪ {x ∈ A;x ∈ B}

)
=

(
pk+` + (1− pk)(1− p`)

)n

, (7)

wherep = 2−1/r. The expected number of disjoint set pairs
that violate Eq. (4) is thus

N =
r∑

k=1

k−1∑
`=0

(
T

k

)(
T − k

`

)
p(k, `)+

r∑
k=1

((
T
k

)
2

)
p(k, k). (8)

By the choice ofp and the fact thatk, ` ≤ r, (1 − pk) ≤ pk

and(1−p`) ≤ p`. Consequently, the right-hand side of Eq. (7)
is bounded from above asp(k, `) ≤ min{pnk, pn`}. Hence the
right-hand side of Eq. (8) is bounded from above as

N ≤
r∑

k=1

k−1∑
`=0

(
T

k

)(
T − k

`

)
pnk +

r∑
k=1

((
T
k

)
2

)
pnk (9)

Now, for T ≥ 2r2 + r − 1,

k−1∑
`=0

(
T − k

`

)
≤

k−1∑
`=0

(
T

`

)
≤ k

(
T

k − 1

)
=

k2

T − k + 1

(
T

k

)
≤ 1

2

(
T

k

)
,

and
((T

k)
2

)
<

((
T
k

))2

/2. Subsequently, Eq. (9) is bounded by

N ≤
r∑

k=1

((
T

k

))2

pnk. (10)

In Eq. (10), the largest term is the one fork = 1 if T ≤
(k + 1)p−n/2 + k for all k, i.e., if

T ≤ 1 + 2p−n/2 = 1 + 2 · 2 n
2r (*)

Then by Eq. (10),
N ≤ rT 2pn

and thusN < 1 if

T <
p−n/2

√
r

=
2

n
2r

√
r

. (**)

Between (*) and (**), (**) is more restrictive for alln andr.
As a consequence, there exists a disjointlyr-superimposed
family of sizeT =

⌈
r−1/22

n
2r

⌉
− 1, which implies the lower

bound of (5).
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V. OPEN PROBLEMS

We conclude by posing the following open problems.
Problem 5.1: It is known that

c1

r2
≤ Rf (r) ≤ c2 lg r

r2
.

Try to diminish the gap between the two bounds.
Problem 5.2:We show in this paper that

c1

r2
≤ Rg(r) ≤

c2

r
.

Try to diminish the gap between the two bounds.
Problem 5.3:We show in this paper that

1
2r

≤ Rh(r) ≤
(1

2
+ o(1)

) lg r

r
.

Try to diminish the gap between the two bounds.
Problem 5.4:Do r-SUT andr-superimposed families differ

significantly, i.e., do the functionsRg(r) andRf (r) differ in
magnitude?

Remark.In the course of submitting this paper we learnt
that Noga Alon and Vera Asodi showed thatRg(r) = Ω(1/r)
which answers Problems 5.2 and 5.4.
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Mikl ós Ruszinḱo is a senior research fellow at the Computer and Automation
Research Institute of the Hungarian Academy of Sciences. He received his
Ph. D. in mathematics from the Hungarian Academy of Sciences in 1995.
He was a Postdoctoral Fellow at University of Cambridge in 1995–1996. He
was a Visiting Assistant Professor and then a Visiting Associate Professor at
Carnegie Mellon Unversity in 1998–2000 and in 2002–2003, respectively. His
main research interests lie in combinatorics and codes.


