Ramsey problems on Steiner triple systems

Research Experience Course

A Steiner triple system $T=(V, B)$ is a set V together with a set B of 3-element subsets of V, called blocks such that every distinct pair $v, w \in V$ is in precisely one block of B. We denote by $S T S(n)$ any Steiner triple system with $|V|=n$. A 2 -coloring of an $S T S(n)$ is an assignment of red or blue colors to the blocks.

Exercise 1. How many blocks are in $S T S(n)$?
Exercise 2. Prove that if $S T S(n)$ exists then $n \in\{1,3\} \quad(\bmod 6)$.
Exercise 3. Find the (unique) $S T S(7)$ and $S T S(9)$.
A partial triple system $T=(V, B)$ is a set V together with a set B of 3-element subsets of V, called blocks such that every distinct pair $v, w \in V$ is in at most one block of B. We denote by $\operatorname{PTS}(n)$ any partial triple system with $|V|=n$.

A partial triple system H has the Ramsey property if the following is true: there is an $n_{0}=n_{0}(H)$ such that for $n \geq n_{0}$ in every 2-coloring of any $S T S(n)$ there is a red or a blue copy of H. The aim of the project is to find as many nice H as possible.

Exercise 4. Prove that partial triple systems with two blocks have the Ramsey property.

Solutions will be collected at the opening party or can be sent before that time by email to gyarfas@renyi.hu.

András Gyárfás

