POLINOMIALS

CLASSICAL ALGEBRA

The following set of exercises is usually a $4-5$ weeks load.

1. Show that for $f(x) \in R[x]$ if $f(z)=0$ for some $z \in C$, then $f(\bar{z})=0$, as well (with the same multiplicity).
2. Show that $z \in C$ is the root of $x^{2}-2 \operatorname{Re}(z)+|z|^{2}$, (this is a real polynomial.)
3. Show that over R every polynomial splits into quadratic and linear factors.
4. Factor the following polynomials over C, R, Q :
$x^{2}+x+1, \quad x^{4}+4, \quad x^{4}-5 x^{2}+6$
5. Factor the following polynomials over C, R :
$x^{n}-1, \quad x^{n}+1, \quad x^{2 n}+x^{n}+1$
6. Find the following gcd-s: $\left(x^{n}-1, x^{k}-1\right),\left(x^{n}+1, x^{k}+1\right)$,
7. Show that $x^{2}+x+1 \mid x^{3 m}+x^{3 n+1}+x^{3 k+2}$
8. Find the sum of the squares, the sum of the cubes the product and the sum of the reciprocals of the (complex) roots of the polynomial $2 x^{4}+2 x+3$.
9. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be the three roots of $x^{3}+3 x+1$. Find the polynomials with roots $\alpha_{1}^{2}, \alpha_{2}^{2}, \alpha_{3}^{2}$ and $\alpha_{1}+\alpha_{2}, \alpha_{3}+\alpha_{1}, \alpha_{2}+\alpha_{3}$
10. Let

$$
x+y+z=a \text { and } \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a}
$$

Show that one of x, y, z is equal to a.
11. Find the sum, the product, the sum of the squares of the n-th roots of unity.
12. Find a polynomial of small degree s.t. $f(1)=1, f(i)=i, f(-1)=$ $-1, f(-i)=-i$,
13. Find a polynomial of small degree s.t. $f(1)=1, f(i)=-i$, $f(-1)=-1, f(-i)=i$,
14. Find a polynomial of small degree s.t. $f(j)=2^{j}$ for $j=0,2, \ldots n$
15. Find the remainder of $x^{2000}+x^{1966}+x^{888}+x^{666}$ when it is divided by $x^{2}-1$ and $x^{2}+1$.
16. Let $f(x)$ be a polynomial s.t. i is a 6 time root of f. Can the degree of f be 10 over R (over C)?
17. Find all polynomials s.t. $f^{\prime} \mid f$.
18. For what b does the polynomial $x^{n}+b x^{k}+1$ has a triple root?
19. Let f be a polynomial such that it has n nonzero coefficients. Show that the only possible root of f with multiplicity n is 0 .
20. Show that $3 x^{7}-9 x^{5}+6 x^{4}-24 x+44$ is irreducible over Z. Hint: use (prove) the reversed Schoeneman-Eisenstien's criteria).
21. Prove that $5 x^{13}-x+6$ is irreducible over Z.
22. Is $3 x^{3}-2 x^{2}+x-10$ irreducible over Z ?
23. Show an irreducible polynomial $p(x) \in Z[x]$ s.t. $p(\sqrt{2}+\sqrt{3})=0$.
24. Find all irreducible (monic) polynomials of degree 2 over F_{5}.
25. Is $x^{3}-4 x^{2}+x-3\left(x^{3}-4 x^{2}+x-1\right)$ irreducible over F_{7} ?
26. Using the above tricks prove that the product of 2 primitive polynomial is primitive.

