Good Graph Hunting

Research Project

The (k-color) Ramsey number $R_{k}(G)$ of a graph G is the smallest integer n for which the following is true: in any coloring of the edges of the complete graph K_{n} with colors $1,2, \ldots, k$, for some $i \in\{1,2, \ldots, k\}$ there is a copy of G whose edges are all colored with color i (a monochromatic copy of G).

Exercise 1. Let P_{3} denote the path on 3 vertices. Prove that

$$
R_{k}\left(P_{3}\right)=\left\{\begin{array}{lll}
k+1 & \text { if } k \equiv 0 & (\bmod 2) \\
k+2 & \text { if } n \equiv 1 & (\bmod 2)
\end{array}\right.
$$

The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number m of colors for which one can color the vertices of G with m colors so that no two adjacent vertices are colored with the same color. Exercise 1 is true in the following more general form:

Exercise 2. Suppose that $\chi(G)=R_{k}\left(P_{3}\right)$. Then, in every k-coloring of the edges of G there is a monochromatic P_{3}.

We call a graph $H k$-good if there is a monochromatic copy of H in every k-coloring of the edges of any $R_{k}(H)$-chromatic graph. A graph is good if it is k-good for every positive integer k. Exercise 2 states that the graph P_{3} is good.

Exercise 3. A graph H is 1-good if and only if H has no cycle.
The aim of the project is to find further good (or 2-good) graphs.

Budapest, August 12, 2014
András Gyárfás

